Tag

plant science Archives - Page 86 of 87 - The Global Plant Council

Stress Resilience: Call for papers for a JXB Special Issue!

By | Blog, GPC Community, Scientific Meetings, SEB

GPC banner Without linkFollowing the recent Stress Resilience Symposium and Discussion Forum that we co-hosted in Brazil last month with the Society for Experimental Biology, we are pleased to announce a call for papers for a forthcoming Special Issue of the SEB’s Journal of Experimental Botany.

Achieving food security in a changing and unpredictable climate urgently requires a better understanding of the mechanisms by which plants interact with and respond to their environments. This special issue will bring together a collection of papers highlighting the best current research in stress resilience contributing to global efforts to develop crops and cropping systems that are better able to deal with fluctuating and stressful environmental conditions.

Proposals are invited for the submission of new and innovative research papers that contribute to this goal (submission before the end of January 2016 will guarantee inclusion in the special issue pending positive peer review). Confirmed contributors already include: Andrew Borrell (University of Queensland, Australia), Elizabete Carmo-Silva (Lancaster University, UK), Scott Chapman (CSIRO, Australia), Bill Davies (GPC President and Lancaster University, UK), Lyza Maron (Cornell University, USA), Jianbo Shen (China Agricultural University), and Roberto Tuberosa (University of Bologna, Italy).

If you would like to contribute a paper, please email a title and short abstract to Mary Traynor: m.traynor@lancaster.ac.uk.

Genetic Diversity in our Food Systems

By | Blog, Future Directions
Gurdev Khush at IRRI

Gurdev Khush at IRRI. Photo credit: IRRI photos. Reproduced under a Creative Commons license 2.0

This week’s blog post has been written by agronomist and geneticist Gurdev Khush. Gurdev had a major role to play in the Green Revolution, and while working at the International Rice Research Institute (IRRI) developed more than 300 rice varieties, one of which (IR36) became the most widely planted variety of rice. The impact and significance of his work has been recognized by numerous awards including the World Food Prize in 1996, the Wolf Prize in Agriculture in 2000, the Golden Sickle Award in 2007, and in 1987 the Japan Prize.

Our civilization developed with the domestication of plants for food, fiber and shelter about 10,000 years ago. Since then we have made constant improvements to these domesticated plants based on genetic diversity. It is the conservation, evaluation and utilization of this genetic diversity that will be essential for further improvements in our food crops and world food security.

Gene banks conserve biodiversity

The first important step in conserving biodiversity was the establishment of a gene bank by Nikolai Vavilov at the Leningrad Seedbank in Russia during the 1920s. In subsequent years more gene banks were created in developed countries, and the Green Revolution provided major impetus for the establishment of gene banks in developing countries. The first gene bank for the conservation of rice germplasm was organized after IRRI was established in the Philippines in 1960. Other rice growing countries followed suit and now most of them have their own gene banks.

The IRRI gene bank has over 120,000 entries

IRRI medium term seed store

The medium term storage unit of the IRRI seed bank. Photo credit: IRRI photos. Reproduced under a Creative Commons license 2.0.

The IRRI gene bank has progressively grown from a few thousand entries in 1962 to over 120,000 entries today, including accessions of all the wild species. The germplasm is stored under two-temperature and humidity regimes. The medium term store keeps seeds at 4ºC and a relative humidity of 35% for 30–40 years, while in the longer term store, maintained at –10ºC and a relative humidity of 20%, seeds are expected to remain viable for 100 years.

IRRI accessions are evaluated for morphological traits, grain quality characteristics, disease and insect resistance, and for tolerance to abiotic stresses such as drought, floods, problem soils and adverse temperatures. These are all important characteristics in terms of breeding resilient and high yielding rice varieties for the future.

Selection of new rice varieties

Numerous landraces have been utilized for breeding high yielding rice varieties. The first high yielding variety, IR8, was developed from a cross between two landraces, one from Indonesia and the other from China. Another variety, IR64, is one of the most widely grown rice varieties, and has 19 landraces and one wild species in its ancestry.

IR64

Rice variety IR64, one of the most widely grown rice varieties. Photo credit: IRRI photos. Used under Creative Commons license 2.0.

Ensuring future food security

Gene banks have played an important role in world food security. However, as the population grows there are now even bigger challenges for meeting demand. Climate change and increased competition for land and water resources further magnify the problem. We need to breed climate resilient crop varieties with higher productivity, durable resistance to diseases and insects, and tolerance to abiotic stresses. Success will depend upon the continuous availability of genetic diversity; we must redouble our efforts to unlock the variability currently preserved in our gene banks.

Diversity Seek Initiative

Establishment of the Diversity Seek Initiative (DivSeek) and the proposed Digital Seed Bank, under the auspices of the Global Plant Council, is a welcome development.

The aim of DivSeek is to develop a unified, coordinated and cohesive information management platform to provide easy access to genotypic and phenotypic data on germplasm preserved in gene banks. It is an international effort to bring together gene bank curators, plant breeders and biological researchers. To begin with, the project will develop standards and generate genotypic, transcriptome and phenotypic information for cassava, rice and wheat diversity. This will form the foundation of the Digital Seed Bank, a novel type of database containing standardized and integrated molecular information on crop diversity. The information from this database will be publicly available, and will be of enormous scientific and practical value. It has the potential to significantly increase our understanding of the molecular basis of crop diversity, and its application in breeding programs.

If your organization is interested in joining DivSeek, information can be found here. Alternatively, sign up to the mailing list to keep up to date with the initiative.

Providing For Our Brave New World

By | Blog, Future Directions
The Journal of Experimental Botany (JXB) published a special issue in June entitled ‘Breeding plants to cope with future climate change’

The Journal of Experimental Botany (JXB) published a special issue in June entitled ‘Breeding plants to cope with future climate change

By Jonathan Ingram

The Journal of Experimental Botany (JXB) recently published a special issue entitled ‘Breeding plants to cope with future climate change’.

More often than not, climate change discussions are focused on debating the degree of change we are likely to experience, unpredictable weather scenarios, and politics. However, regardless of the hows and whys, it is now an undeniable fact that the climate will change in some way.

This JXB special issue focuses on the necessary and cutting edge research needed to breed plants that can cope under new conditions, which is essential for continued production of food and resources in the future.

The breadth of research required to address this problem is wide. The 12 reviews included in the issue cover aspects such as research planning and putting together integrated research programs, and more specific topics, such as the use of traditional landraces in breeding programs. Alongside these reviews, original research addresses some of the key questions using novel techniques and methodology. Critically, the research presented comes from a diversity of labs around the world, from European wheat fields to upland rice in Brazil. Taking a global view is essential in our adaptation to climate change.

Avoiding starvation

Why release this special issue now?

Quite simply, the consequences of an inadequate response to climate change are stark for the human population. In fact, as previously discussed on the Global Plant Council blog, changing climate and extreme weather events are already having an impact on food production. For example, drought in Australia (2007), Russia (2010) and South-East China (2013) all resulted in steep increases in food prices. However, a positive side effect of this was to put food security at the top of the global agenda.

A farm in China during drought. Reduced food production can cause steep rises in food prices leading to socio-economic problems.  Photo credit: Bert van Dijk used under Creative Commons License 2.0

A farm in China during drought. Reduced food production can cause steep rises in food prices leading to socio-economic problems.
Photo credit: Bert van Dijk used under Creative Commons License 2.0

Moving forwards, researchers and breeders alike will have to change their fundamental approach to developing novel varieties of crops. In the past, breeders have been highly succesful in increasing yields to feed a growing population. However, we now need to adapt to a rapidly changing and unpredictable environment.

Dr Bryan McKersie sums this up in his contribution to the special issue. He commented: “Current plant breeding methods use large populations and rigorous selection in field environments, but the future environment is different and does not exist yet. Lessons learned from the Green Revolution and development of genetically engineered crops suggest that a new interdisciplinary research plan is needed to achieve food security.”

Driving up yields

So which traits should we be studying to increase resilience to climate change in our crops?

A potentially important characteristic brought to the foreground by Dr Karine Chenu and colleagues (University of Queensland, Australia) is susceptibility to frost damage. Although seemingly counterintuitive at first, the changing climate could result in greater frost exposure at key phases of the crop lifecycle. Warmer temperatures, or clear and cool nights during a drought, would allow vulnerable tissue to emerge earlier in the spring (Gu et al., 2008; Zheng et al., 2012). A late frost could then be incredibly destructive to our agricultural systems, causing losses of up to 85% (Paulsen and Heyne, 1983; Boer et al., 1993).

As explained by Dr Chenu, “Finding frost tolerant lines would thus help to deal with frost damage but also with losses due to extreme heat and drought – as they could be avoided by earlier sowings”.

The authors conclude that a “national yield advantage of up to 20% could result from the breeding of frost tolerant lines if useful genetic variation can be found”. The impact of this for future agriculture is incredibly exciting.

This study is just one illustration of the importance of thinking outside the box and investigating a wide range of traits when looking to adapt crops to climate change.

You can find the full Breeding plants to cope with future climate change Special Issue of Journal of Experimental Botany here. Much of the research in the issue is freely available (open access).

Journal of Experimental Botany publishes an exciting mix of research, review and comment on fundamental questions of broad interest in plant science. Regular special issues highlight key areas.

References

Association of Applied Biologists. 2014. Breeding plants to cope with future climate change. Newsletter of the Association of Applied Biologists 81, Spring/Summer 2014.

Boer R, Campbell LC, Fletcher DJ. 1993. Characteristics of frost in a major wheat-growing region of Australia. Australian Journal of Agricultural Research 44, 1731–1743.

Gu L, Hanson PJ, Post WM et al. 2008. The 2007 Eastern US spring freeze: increased cold damage in a warming world? BioScience 58, 253–262.

Paulsen GM, Heyne EG. 1983. Grain production of winter wheat after spring freeze injury. Agronomy Journal 75, 705–707.

Zheng BY, Chenu K, Dreccer MF, Chapman SC. 2012. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biology 18, 2899–2914.

A Postcard From… The Argentinean Society of Plant Physiology (SAFV)

By | Blog, GPC Community, SAFV

Professor Edith Taleisnik

This week Professor Edith Taleisnik describes the vision and activities of the Argentinean Society of Plant Physiology (SAFV), a Member Organization of the Global Plant Council dedicated to promoting collaboration in plant science within Argentina, across Latin America and beyond.

SAFV member Dr Constanza Carrera drinks mate, an infusion made from leaves of Ilex paraguariensis, which is very popular in Argentina, Uruguay and southern Brazil.

SAFV member Dr Constanza Carrera drinks mate, an infusion made from leaves of Ilex paraguariensis, which is very popular in Argentina, Uruguay and southern Brazil.

The Argentinean Society of Plant Physiology (Sociedad Argentina de Fisiologia Vegetal; SAFV) was founded in 1958 to nucleate researchers and teachers in plant physiology in Argentina. Since then the SAFV has maintained continuous activity in the country and the region, providing opportunities for the dissemination and exchange of information related to plant function. It has about 350 members, mostly from Argentina and also from neighboring Uruguay. The SAFV is linked with the Global Plant Council and many other important international plant science organizations.

Exchanging ideas in Argentina and beyond

29th SAFV meeting

The 29th SAFV meeting

One of the main objectives of the society is to organize meetings, which are held every two years. The last one was held in Mar del Plata, and was attended by nearly 600 people. The SAFV has close ties with the Brazilian Society of Plant Physiology (BSPP), so every other SAFV meeting is a joint Latin American event in association with the BSPP. These meetings provide a unique opportunity for scientists in the area to meet, analyze and exchange views on the future of this field, to plan for joint efforts and enterprises, to share personal experiences and contribute to a regional and global perspective of local endeavors.

The participation of students and young scientists in SAFV meetings is stimulated by invitations to deliver lectures and organize symposia, and by making available fellowships that cover travel and registration costs. In accordance with its mandate to promote and diffuse knowledge in plant science, the SAFV also organizes and sponsors courses and workshops.

Conversations with keynote speakers

Keynote speaker discussions at an SAFV meeting

Poster sessionPlant science, and plant physiology in particular, has experienced steady growth and development in Argentina, reflecting the importance of agriculture in its broadest sense; pastures and forests for the Argentine economy. Established groups all over the country produce novel data on various aspects of plant function and interaction with other organisms and the environment, which is particularly relevant to local and global crop production. The wide range of this work is reflected in the proceedings of the last plant physiology meeting.

Other Argentinian plant science societies

There are several other plant science societies in Argentina. Scientists working on botanical and morphological topics are affiliated to the Sociedad Argentina de Botánica (SAB). The focus of the members of the Asociación Argentina de Ecología (AsAE) is centered in environmental topics. A more recently formed society, the Asociación Argentina de Fitopatólgos (AAF), is dedicated to plant pathology, while the Sociedad Argentina de Investigación Bioquímica y Biología Molecular (SAIB) features a section specifically devoted to plant biochemistry and molecular biology. All of these societies hold periodical meetings, stimulate the work of young scientists through incentives and prizes, and publish journals (e.g. Ecología Austral) and books.

Get in touch

If you’d like to know more about the work of the SAFV, or how you can get involved with the society, have a look at their website, or get in touch via Facebook or Twitter (@fisiovegetal).


About the author

Edith TaleisnikProfessor Edith Taleisnik researches the physiology of plants under saline stress for the Argentinean National Scientific and Technical Research Council (CONICET), and is based at the Instituto de Fisiologia y Recursos Geneticos Vegetales  (IFRGV) CIAP, INTA, Argentina. Edith was the president of the SAFV from 2000 to 2004, and is now a member of the scientific committee.

Plant Biology 2015: Introducing Plantae.org

By | ASPB, Blog, Future Directions, GPC Community, Plantae, Scientific Meetings, SEB
Minneapolis skyline. Photo by 'zman z28', Flickr, used under a CC BY-NC-ND 2.0 license.

Minneapolis skyline. Photo by ‘zman z28’, Flickr, used under a CC BY-NC-ND 2.0 license.

Ruth and I recently flew out to Minneapolis, Minnesota, USA, to attend the American Society of Plant Biologists’ (ASPB) annual conference, Plant Biology 2015.

Ruth did a sterling job of live-tweeting the scientific sessions she attended. She also spent some time stationed at the ASPB booth to talk to people about the Global Plant Council (GPC), as well as a big project we’re helping to bring to life: Plantae.org. I’ll talk more about what I did at the conference later… But first, what is Plantae.org?

The Evolution of Plantae.org

Some time ago, here at the GPC, we thought it would be a great idea if there was one, online location where plant scientists and teachers could go to look for and share new ideas, tools and resources for research and education. We tentatively called it the ‘Plant Knowledge Hub’, and set about looking for people or organizations that might be able to help us make it a reality.

In doing so, we discovered that the ASPB was interested in creating a kind of community networking and collaboration platform, for which they had the working title ‘Plant Science Exchange’. Joining forces, we decided to combine the two ideas into one big portal, now called ‘Plantae’. Extending beyond the ASPB membership, Plantae will be for plant scientists and educators all over the world. We hope it will become the leading plant science resource hub and community gathering place.

Lisa modeling her Plantae t-shirt!

Lisa modeling her Plantae t-shirt!

At this point, I should also mention the Society for Experimental Biology (SEB), without whose help the GPC would not have been able to move forward with this project. The SEB generously provided enough funding for my post! I joined the GPC in February as the Outreach & Communications Manager, so as well as looking after the GPC’s internal and external communications and helping to spread the word about the work of the GPC, one of my main duties is to identify and curate tools, resources and plant science information to upload to Plantae.

Building Plantae.org

I’ve made a few simple websites in the past, but nothing as complicated as an entire ‘digital ecosystem’ so taking the ‘Plant Science Knowledge Exchange Hub’ from an idea to the reality of Plantae.org was going to be a mammoth task. Fortunately we have had a lot of help!

Susan Cato, the ASPB’s Director of Member Services and Digital Marketing, and her team, have been doing a stellar job of pulling different stakeholder groups together to build and develop the Plantae platform. As well as a group of web architects to build the portal’s infrastructure, an agency called LookThink has been involved, with the unenviable task of optimizing the user experience. It’s no mean feat to take our ideas about what the platform should do, and the practicalities of how it can be built, to ensure that the final online product actually does what users want and need it to do in an intuitive, user-friendly way!

Ultimately, Plantae.org will have features such as Facebook or LinkedIn-style user profiles and groups, with the ability to ‘connect’, interact and send private messages. It will have public and private discussion boards where scientists can collaborate, talk about issues in science, or ask questions to the community and have them answered. It will eventually contain hundreds and thousands of pages of content including research papers, teaching resources, videos, posters and much more, some of which will be curated by groups like the GPC, and others uploaded directly by members. Underlying all of this, the portal needs a robust, intuitive search engine to allow users to find exactly the contact they are looking for.

User Testing the Beta Version

PlantBiology2015logoSo during the ASPB conference, I was to be found in a meeting room with Clare Torrans from LookThink, helping her to conduct some user experience analysis on an early beta version of the Plantae site. We recruited a range of potential Plantae users – from students through to senior professors – and asked them to tell us what they thought of the idea of Plantae, whether they would use it and find it useful, whether the icons, buttons and links on the screen did what they expected, and what else they would like Plantae to do.

I’d never consciously considered the ‘user experience’ of a website before, but having spent time with Clare, I now realize it’s a vital part of the build process – and now I’m analyzing every website I visit!

The feedback we received was varied: there were some clear patterns related to age, academic level, or previous experience with social media, some people pointed out elements of the site I hadn’t even noticed, or misinterpreted buttons I’d thought were obvious, but – positive or negative – all of the feedback we received was useful and will be fed back into the site development process.

When can I start using Plantae?

The site isn’t quite ready yet, but taking into account all of the data we obtained from the user testing sessions at Plant Biology 15, we will hopefully be ready for launch in the Autumn. Watch this space for more news!

James Wong: Plant Geeks Will Save The World!

By | Blog, Interviews

James Wong trained as a botanist at Kew Gardens in London, UK, before embarking on a wide and varied career encompassing broadcasting, writing and garden design. He demonstrates his passion for plants in every strand of his work, and is making a significant contribution towards raising the profile of horticulture and the plant sciences within the UK. He took some time out of his busy schedule to speak to Amelia at the Global Plant Council.

james wongJames qualified with a Masters in Ethnobotany; the study of how people use plants, in 2006. This branch of the plant sciences is very relevant to tackling pressing issues such as food security and conservation.

Plants have provided humanity with essentially every aspect of our sustenance and material culture for millennia. Being a fusion of anthropology and botany, ethnobotany is vital to understanding everything we are and everything we do.

 Humanity relies on an incredibly narrow range of plants to meet its needs, with just 3 crops providing up to 50% of our sustenance. This means civilization has pinned its future on just 0.00006% of the world’s edible plants!

With threats like climate change and a growing global population, it is simply not feasible to continue to marginalise 99.99994% of our crops. Learning about how to grow, prepare and eat those other plants is where the work of ethnobotanists is vital.

 This is just one example of how ethnobotany is essential in helping combat some of the biggest threats our species are facing in the next century. Plant geeks will indeed save the world.

To meet the needs of a growing population, many resources are currently focused on grow for flavourincreasing productivity of our large scale farming systems. However, in his most recent book, Grow for Flavour, James explores how we can increase the nutritional quality of home-grown produce. Could small-scale food production such as personal allotments or gardens have any role to play in our future food production systems?

In short, no. My tiny urban garden is just 6x6m, and there is no way that it is ever going to make a significant contribution to my calorie intake.

However (and this is a big however), even in this tiny space I can get access to a range of fruit and vegetables that could make an important contribution towards certain micronutrients in my diet. Many of these, including key phytonutrients, are not found in the limited range of crops grown commercially, at least in large quantities.

Green Zebra tomatoes are a good source of tomatidine.  Photo credit: J https://www.flickr.com/photos/florence_craye/2953736794/in/photolist-5v1F3s-6Pshmn-8 Used under a CC BY-NC-ND 2.0 license.

Green Zebra tomatoes are a good source of tomatidine.
Photo credit: J  Used under a CC BY-NC-ND 2.0 license.

For example tomatidine, a chemical found in green tomatoes, may help improve muscle tone and reduce atrophy according to some studies. It is not really found in any supermarket produce, yet I can easily grow 10 kgs of tasty, tomatidine-rich fruit like ‘Green Zebra’ each summer. Popped in the freezer they could provide me with an important source of this phytonutrient year round that would otherwise be almost totally absent in my diet.

Home gardens can make significant financial sense too, removing cost as a barrier to nutrient availability.

The garden design studio, Amphibian Designs, was co-founded by James in 2008. I have always been fascinated by plants and I feel that designing with them helps me express that.” This fascination has led the studio to win four Royal Horticultural Society medals for its designs, including two gold medals at the Chelsea Flower Show. Gardening is perhaps something we might associate more with art and creativity than science. However, James finds that: creating spaces with plants and arranging them to express an idea allows me to better understand their botany.” Furthermore, having a scientific rather than arts background can be advantageous in design.

 I have no formal design training and find this actually allows me more creative freedom! I rarely know the design rules and conventions, so I don’t feel I need to slavishly devote my works to them. There is an awful lot of assumed knowledge and entrenched ideas in horticulture, much of which has no factual basis, and being an outsider means you get to circumvent all that.

Engaging the public with the plant sciences is becoming increasingly important yet the perception that plants are boring can be difficult to overcome. Could gardens and horticulture provide a way to approach this problem?

Absolutely. Humans instinctively find plants beautiful. Sadly, I do think UK horticulture has done a rather good job of suppressing this instinct in many people by holding up a singular, historical ideal as the dominant mode of what a ‘proper’ garden should be. Between the rustic woven willow and stately home symbolism, it can be very easy for many people (like me) to not associate themselves with gardening. Would food, fashion, music, art or film limit themselves to such as singular ideal? Of course not, and that explains their far more broad-based appeal.

 One of the most popular stands I saw at Chelsea Flower Show this year was for the European Space Agency, and represented how plants would be grown in space to feed astronauts and fuel interplanetary discovery. The look of wonder in faces of the kids (of all ages) as they wandered through spoke volumes. What an amazing way to engage kids with science.

So, we can’t leave without asking one final question: any tips for the budding gardeners amongst our readers?

Plants always grow and look best when planted to echo how they would naturally grow in the wild. Doing so means you will have less work, healthier plants and a perfectly matching aesthetic almost every time. Google image your favourite plants in their wild habitat and try your best to match them. The rest will take care of itself!

“So what does the Global Plant Council actually do?” – SEB Prague 2015

By | ASPB, Blog, GPC Community, Scientific Meetings, SEB

Dobrý den!

 View across the Vltava river of Prague's Old Town and the Charles Bridge.


View across the Vltava river of Prague’s Old Town and the Charles Bridge.

Last week I attended the Society for Experimental Biology (SEB)’s Annual Main Meeting in the wonderful city of Prague in the Czech Republic.

Armed with a banner, a new batch of hot-off-the-press leaflets, some of our infamous GPC recycled paper pens, and a map of the world, the purpose of my trip was to staff an exhibitor’s booth at the conference to help raise awareness of the GPC and the projects and initiatives we are involved with.

2015-07-03 09.50.14To encourage delegates to speak to the exhibitors, there was a chance to win prizes in exchange for a ‘passport’ filled with stickers or stamps collected from each of the booths. This gave me a fantastic opportunity to meet people from all over the world and tell them about the Global Plant Council – even the SEB’s Animal and Cell biologists!

Many visitors to the booth were from Europe, but I also met people from as far away as Argentina, Australia, China and Vietnam. Thanks to everyone who visited the booth and gave me their email addresses to sign up for our monthly e-Bulletin newsletter!

“So what does the Global Plant Council actually do?”

This was the question I was most frequently asked at the conference. The answer is: many things! But to simplify matters, our overall remit falls into two main areas.

1) Enabling better plant science

2015-07-03 09.50.39

Visitors to our booth at SEB 2015 were asked to put their plant science on the map!

Plant science has a critical role to play in meeting global challenges such as food security, hunger and malnutrition. The GPC currently has 29 member organizations, including the SEB, representing over 55,000 plant, crop, agricultural and environmental scientists around the world. By bringing these professional organizations together under a united global banner, we have a stronger voice to help influence and shape policy and decision-making at the global level.  Our Executive Board and member organization representatives meet regularly and feed into international discussions and consultations.

The GPC also aims to facilitate more effective and efficient plant-based scientific research. Practically speaking, this means we organize, promote, provide support for, and assist with internationally collaborative projects and events. A good example is the Stress Resilience Symposium and Discussion Forum we are hosting, together with the SEB, in Brazil in October.

This meeting – which will be a satellite meeting of the International Plant Molecular Biology 2015 conference – will bring together scientists from across the world who are studying the mechanisms by which plants interact with and respond to their environments, particularly in the face of climate change. It will provide an excellent opportunity for researchers of all levels and from different regions to network and learn from each other, fostering new relationships and collaborations across borders. Registration and abstract submission is now open, so why not come along!

Importantly, as well as learning from researchers all over the world about the fantastic research they are doing, we also want to identify important research that is not being done, or which could be done better. Then, we can come together to discuss strategies to fund and fill these gaps.

You can find out more about our other current initiatives by going to our website.

2) Enabling better plant scientists

2015-07-03 12.42.41As well as physically bringing people together at meetings and events, the Global Plant Council aims to better connect plant scientists from around the world, promote plant research and funding opportunities, share knowledge and best practice, and identify reports, research tools, and educational resources.

Plant scientists have created an amazing diversity of assets for research and education, so by facilitating access to and encouraging use of these resources, we hope that a desperately needed new generation of plant researchers will be inspired to continue working towards alleviating some of the world’s most pressing problems. For example, we’re translating plant science teaching materials into languages other than English, and are helping the American Society of Plant Biologists to curate content for Plantae.org, an online resource hub and gathering place for the plant science community that will be launched later this year – stay tuned!

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

In addition, the GPC website is full of useful information including research and funding news, an events calendar, reports and white papers, fellowships and awards. We operate a Twitter account (@GlobalPlantGPC) for up-to-the-minute news and views, and a Spanish version @GPC_EnEspanol. We also have a blog (obviously!) that is regularly updated with interesting and informative articles written by the GPC staff, our two New Media Fellows, and plant scientists from across our member network. A Facebook page will be coming soon!

If you would like any more information about the projects and initiatives mentioned here, or more details about the GPC’s work, please do contact me (Lisa Martin, Outreach & Communications Manager): lisa@globalplantcouncil.org.

 

An Interview with Mary Williams: Plant Teaching & Social Media

By | ASPB, Blog, GPC Community, Interviews

Mary Williams headshotThis week we spoke to Mary Williams about plant science education, her role as features editor of The Plant Cell, and effective use of social media for scientists.

 

 

 

What inspired you to focus your career on education in the plant sciences? 

As a biochemistry student whose friends were arts majors, I discovered that I really enjoyed the challenge of explaining things through plain language and analogy. After a postdoc I took a faculty position at a primarily undergraduate institution where professors were encouraged to explore different approaches to teaching.

By sharing ideas and resources through ASPB Teaching Tools in Plant Biology, workshops, and my blog, I try to help young scientists gain confidence and become better teachers.

How have people responded to the Teaching Tools in Plant Biology (TTPB) you have developed, and how are these being used?

The response has been really positive. I regularly hear from undergraduates, graduate students, postdocs, lab heads and educators who are using them for a multitude of purposes including lesson preparation, self-learning and outreach. The articles can be accessed through most university libraries or via ASPB membership. They are also available throughout the developing world through the AGORA program.

The teaching tools articles are quite technical, so we didn’t anticipate that high school teachers would want to read them. However, in response to their expressed interest I started posting interesting newsclips and videos onto the various social media sites that I manage. This summer we’re moving all of the content onto a new platform, Plantae.org, which will provide a centralized place for educators to connect in what I have described as a Global Plant Science Learning Community. I’m really excited about providing a space for people to share their ideas and promote discussions about effective plant science teaching.

Why do you think teaching the plant sciences in an inspirational way proves so difficult?

The biggest obstacle is the preconception that plants are not interesting, which too often is conveyed by teachers in primary and secondary education. Additionally, many students have no first-hand experience of growing or caring for a plant, and this first-hand experience is really key. We find that many of the most engaged young people have grown up in close contact with plants, perhaps through a family’s involvement in agriculture or horticulture.

In terms of status and salaries, our society places a much higher value on medical sciences and medical research than the plant sciences; the tangible rewards of working with and studying plants are not always evident.

How can we better capture student imaginations when it comes to plants?

Giving students the opportunity to physically engage and inquire about plants is critical, and this has to span from the earliest years through university education. Students need to use all of their senses when exploring plants, and being allowed to explore in an open-ended way lets students develop an interest and curiosity about plants.

This idea of exploration and open-ended inquiry should continue into university, even in large lecture classes. Give students a pea in a pot to take home and observe. Hand out Brussels sprouts, green onions and daisies for students to pull apart and examine. Use some class time to pose open-ended questions. Good ideas are plentiful!

Innovative tools and support for teachers can also be found on sites such as Wisconsin Fast Plants developed by Paul Williams, SAPS and PlantingScience.org.

You are features editor for The Plant Cell. What does this role involve? 

TTPB is published by The Plant Cell, and we made the decision early on to focus our effort on the teaching of upper-level plant biology. This is the point at which students transition from using textbooks to the primary literature.

To write each article, I read dozens of recent papers and review articles to identify the key questions and the foundational concepts a student needs. I then create both a written article and an image-rich version of the information. Images are powerful ways to explain difficult concepts, and also are useful to people who teach and learn in languages other than English. After I finish the articles I send them out to several experts for peer review. I update the articles regularly so that they continue to reflect our current understanding.

A new initiative this year has been to draw on the talents of the community to develop additional Teaching Tools topics. We’ve been running competitions to solicit pre-proposals for development into Teaching Tools – you can read more about that here.

When did you first get involved with social media? How can social media platforms such as blogging and Twitter be of benefit to researchers? 

My social media roots stretch back to the early 1990s when I was active in the usenet email-based Arabidopsis and Plant Education newsgroups. These networks were excellent sources of resources, ideas and support as I became an independent researcher and educator.

I started using Twitter, ScoopIt and Facebook in earnest in 2011 with the encouragement of Sarah Blackford (@BiosciCareers) and the Global Plant Council’s Ruth Bastow (@plantscience). Like many people, I quickly realized the power of Twitter and other social media tools as a way to connect and converse with the broader community of plant scientists, plant educators, and other plant enthusiasts. Social media not only lets me meet and learn from plant scientists from around the world, but also keep abreast of new publications and get a glimpse into what is being discussed at conferences.

Mary identifying moss in the west of Scotland

Mary identifying moss in the west of Scotland

 

 

 

 

 

 

 

Mary’s top tips for getting started on social media:

  1. Apply the same social rules online as you would in real life
  2. Be friendly
  3. Give credit where it’s due
  4. Avoid talking about religion and politics; be culturally sensitive
  5. Listen a lot, talk a little
  6. Don’t be discouraged if it takes a while to get noticed
  7. Be professional; swearing, gossip and slander are common in the social sphere, but when it’s being broadcast to the world and recorded for posterity, think twice