Tag

plant science Archives - The Global Plant Council

9th International Conference on Functional-Structural Plant Models (FSPM2020)

By | | No Comments

The 9th International Conference on Functional-Structural Plant Models (FSPM2020), will take place in Hannover, Germany, October 5-9, 2020. FSPM2020 aims to gather scientists working in the multi-disciplinary field of plant modelling and its applications. FSPM2020 will target methodological innovations for modelling of 3D-structures at various organization levels of plants, simulation of plant-microclimate interactions, and novel applications in functional-structural plant modelling, centered on questions in plant science, agriculture, horticulture, forestry and ecology.

FSPM2020 will focus on the following themes

  • Functional-structural plant modelling

  • Crop physiology x architecture in a changing world

  • Model-assisted plant phenotyping

  • Cross-talk from cell to ecosystem

  • Plant-to-plant interactions

  • Modelling organ development

  • Theoretical aspects of plant modelling

  • Links to crop modelling and decision support

  • Model parameterization and evaluation

  • LiDar-based canopy reconstruction

  • New software and latest applications

  • Teaching FSPM

  • Outreach of FSPM community

11th SPPS PhD Student Conference 2020

By | | No Comments

The 11th Scandinavian Plant Physiology Society PhD Student Conference will be held in Turku, Finland. Join SPPS on the 2nd – 4th of September 2020 for a meeting in the beautiful Ruissalo island to talk science, network and enjoy the stunning nature.

With the theme, “From Basics to Bioeconomy”, SPPS aims to cover a broad range of topics from basic plant science to their applications in a more sustainable economy and bring together young scientists from the Nordic countries with the upcoming top names in the field.

A new analytic method for identifying bioactive compounds in complex plant extracts

By | ASPS, News, Plant Science, Research

A group of scientists from Sechenov University, Russia, and La Trobe University, Australia, have developed a fast and cost-effective method of detecting and identifying bioactive compounds in complex samples such as plant extracts. They successfully applied the method to examine Mediterranean and Australian native culinary herbs. Three articles on this work were published in Applied SciencesJournal of Pharmaceutical and Biomedical Analysis and Journal of Chromatography A.

Since ancient times, people have been using herbs as food additives and medicines, though a search for useful compounds and a study of their properties remain a difficult task. It is possible to examine a compound if it is stable enough and can be separated from other substances in a sample. However, plant extracts contain hundreds of compounds. In the past, only known compounds were investigated by target analysis and most bioactive compounds were left undiscovered. Thus, the number of compounds that are yet to be explored is so huge that methods that can both screen mixtures and identify the compounds responsible for bioactivity are of greater value.

The authors of the papers used an Effect Directed Analysis (EDA) approach, which is a combination of chromatographic separation with in situ (bio)assays and physico-chemical characterisation to discover and identify bioactive compounds in complex plant samples. Thin-layer chromatography (TLC) and high performance thin-layer chromatography (HPTLC) are well established, chromatographic separation techniques ideally suited for high-throughput screening of bioactive compounds in crude samples. 

To separate substances, TLC uses the fact that various compounds are transported by a solvent and absorbed by a sorbent at different speeds. A sorbent-coated plate with a studied mixture is immersed with one end in the solvent, and under the action of capillary forces, it begins to rise along the plate, taking the substances of the mixture with it. As they move upward, the compounds are absorbed by the sorbent and remain as horizontal bands that can be distinguished in visible, infrared or ultraviolet light. Using this method, crude extracts can be analysed directly with no preparation and possible loss of sample components. 

Bioassays allow to determine the properties of compounds, such as toxicity, observing how model organisms (bacteria, plants or small animals) react to them. In this way, one can select extracts able to inhibit the action of individual enzymes or reactive oxygen species.

Combination of TLC chromatography with microbial (bacteria and yeast) tests and biochemical (enzyme) bioassays enables rapid and reliable characterization of bioactive compounds directly on the chromatographic plates, without isolation/extraction. The advantage of HPTLC is that plates/chromatograms can be directly immersed into enzyme solution (bioassays), incubated for up to several hours, followed by visualization of the (bio)activity profile via an enzyme substrate reaction as bioactivity zones. This approach is more cost effective, enabling a more streamlined method to detect and characterise natural products that are suitable candidates for further investigation as potential new drug molecules.

Using this method, scientists examined the properties of bioactive compounds from culinary herbs commonly used in the Mediterranean diet: basil, lavender, rosemary, oregano, sage and thyme. Australia’s native plants were added to the list: lemon myrtle (Backhousia citriodora), native thyme (Prostanthera incisa), sea parsley (Apium prostratum), seablite (Suaeda australis) and saltbush (Atriplex cinerea). Some of the secondary metabolites from these plants exhibit significant antioxidant activity and enzyme inhibition, like α-amylase inhibition. Therefore, these herbs may be preventive not only against cardiovascular diseases but also type 2 diabetes. The enzyme α-amylase breaks down polysaccharides, thereby increasing blood sugar levels. Recent studies suggest that hyperglycemia induces generation of reactive oxygen species, alteration of endogenous antioxidants and oxidative stress. It was found that patients with uncontrolled sugar levels in addition to diabetes also suffer from accelerated cognitive decline independent of their age. Although Australian native herbs are used as a substitute for related European plants, their medicinal properties are much less studied.

After preparing the extracts, the scientists began to study their composition and qualities. Rosemary and oregano extracts showed the greatest antioxidant activity, while sage, oregano and thyme were the best at slowing down reactions involving α-amylase (extracts from lavender flowers and leaves were the only ones not to show this effect). Among the studied Australian native herbs, lemon myrtle showed the strongest antioxidant properties, with the best α-amylase inhibition observed with extracts of native thyme (this property was noticed for the first time), sea parsley and saltbush.

The study of plant extracts using bioassay and thin-layer chromatography allows scientists to examine a variety of compounds, find mixtures that have the desired properties and isolate substances that exhibit them to the greatest extent. This fast and cost-effective method will be useful for finding new drug compounds.

Read the papers: Applied SciencesJournal of Pharmaceutical and Biomedical Analysis and Journal of Chromatography A.

Article source: Sechenov University via Eurekalert

Image credit: Melburnian / Wikimedia

The harmful effect of ozone on plants

By | News, Plant Health, Plant Science

A research team has successfully quantified and visualised the impact of Hong Kong air pollution especially ozone pollutant on plants and the environment. Although the experiment took place in a rural area and in Spring, which would usually have a lower average ozone concentration, the pollutant level still reached high enough to do significant damage.

Read More

Scientists are working to protect invaluable living collections during coronavirus lockdowns

By | Agriculture, News, Plant Health, Plant Science, Research

Staying on top of these collections is time-consuming during the best of times, and this task becomes even more complex in the age of social distancing. Yet thousands of scientists across the globe are doing just that, maintaining everything from crickets, to tissue cultures, mice, powdery mildews, nematodes, psyllids, zebrafish and even rust fungi.

Read More

Scientists seek to establish community-driven metadata standards for microbiomes research

By | News, Plant Health, Plant Science

We are living through an explosion in the availability of microbiome data. In agricultural systems, the proliferation of research on plant and soil microbiomes has been coupled with excitement for the potential that microbiome data may have for the development of novel, sustainable, and effective crop management strategies. However, while this is an exciting development, as the collective body of microbiome data for diverse crops grows, the lack of consistency in recording data makes it harder for the data to be utilized across research projects.

Read More