Tag

plant science Archives - Page 86 of 88 - The Global Plant Council

Let’s get Plantae!

By | Blog, GPC Community, Plantae

So you’re hearing good things about the new plant science networking platform Plantae and want to get involved? You’ve come to the right blog post! Read on to learn how to set up your profile, find friends and get involved with the community.

Who are you?

Plantae profile

Filling in your profile is easy!

Plantae is a great place to network with researchers around the world, so you’ll want your profile to be as detailed as possible.

As a minimum, add your name, a profile photo, your professional affiliations and a summary of who you are and what you do. This will help your colleagues and friends to find you, and break the networking ice with new connections!

What makes a good bio? Give the reader a little information about your fields of interest, background, plant science outreach, new papers, favorite plant, whatever you like (related to plants and plant science, of course!). Remember that Plantae is a professional networking site, so don’t put anything on there that you wouldn’t want your boss (current or future!) to see!

Where can I find out more about this interesting person?

Plantae social media

Don’t forget to add your social media and researcher profiles

A great feature of the Core Profile is the ability to add your social media profiles, website, and enhance the visibility of your research by adding researcher profiles, for example your ORCID, Mendeley, or ResearchGate account. To ensure that the accounts connect properly, add the full URL of each profile, not just your account name.

 

Will you be my friend?

From the Community homepage you can choose to see the recent activity of your friends, but only if you’ve added them first!

Add a friend on Plantae

How to add a friend on Plantae

To find colleagues, click on ‘Members’ and you can search for a name, or filter all members by city, state or country. Click on your friend’s name to go to their profile. On the left sidebar, you’ll see a button named ‘User Actions’, which when clicked brings up the option to add them as a friend. After they accept your request, you’re officially friends. Congratulations!

Branching out

Plantae groups

Join a group to continue networking

Now you’ve added everyone you know, it’s time to connect with people that you don’t! Get over to the Discussion boards and let everyone know how you feel about the latest hot paper or public engagement scheme. Or you could join a Group of users who share your interests, location, or love of plant-themed poetry (disclaimer: the latter is currently not a Plantae group – feel free to start it!). It’s easy to join conversations or start one of your own.

Finding funding, jobs and resources

Plantae is a hub of plant science resources, including research news, funding opportunities, job advertisements, science policy news and a wealth of education and public engagement tools. Log in regularly to see up and coming events, grant calls, opinion pieces and more, or maybe upload some of your own!

Join us!

There you have it. Now you know the basics, reach out to the Plantae network, get involved in exciting plant science discussions, make the most of funding and job opportunities, and, pretty please, fill in your profile!

A typical day for PhD students in Japan

By | Blog, GPC Community
Akiko Nakazaki

Akiko Nakazaki, PhD student at Kyoto University

Kon-nichiwa! (Hello!) I am Akiko Nakazaki, a PhD student studying plant molecular cell biology at Kyoto University in Japan.

I’m interested in plant defense – specifically the glucosinolate-myrosinase defense system, which is specific to Brassicales such as Arabidopsis thaliana. Glucosinolates are a group of secondary metabolites stored in separate cells to myrosinases, the enzymes that break them down. Upon tissue damage, the glucosinolates and myrosinases are released from their cells and combine. The glucosinolates are hydrolyzed to volatile repellent compounds such as isothiocyanates and nitriles.

Glucosinolate myrosinase defense system

When damaged, cells containing glucosinolate and myrosinase are ruptured, releasing their contents. The glucosinolate is broken down by the myrosinase into volatile compounds that repel herbivores

I was impressed by this ingenious and rational survival strategy! I want to reveal this defense system at the cellular level, and am researching it in Arabidopsis thaliana by performing microscopic observations, bioassays with insects, and so on.

A day in the lab

Are you interested in how PhD students from other countries spend their day in the laboratory? I am! Let me tell you about my typical day in the lab.

I wake up at 8:30am, and have morning coffee and toast for breakfast while reading a newspaper. Then, I get dressed and ride on my bicycle to the University. During the ride (about 10 minutes), I remind myself of the day’s schedule. I get to the lab at 10am and take my seat. All the members of the lab have their own desk and workbench. I turn on my computer and check my emails.

In the daylight, I basically do experiments and read papers. I start doing microscopic observations and lose track of time until I hear my stomach growling and realize that it is almost 2pm. I have lunch at the eating space in lab. In this room, there are always some lab members who are eating, discussing their research, playing social games, etc. After lunch, I report the result of my microscopic observations to my boss and we have a brief discussion about it.

Microscopic_observations

Then, I return to my seat and realize the primers I ordered yesterday have arrived. I perform a PCR and prepare an agarose gel for electrophoresis. While I am waiting for the PCR to end, I search PubMed and Google Scholar for new papers to read. I load the PCR products to the gel and check that the PCR worked. In the evening, I allocate myself free time for doing more experiments, reading more papers, preparing research presentations, discussions, etc.

I’ve sought a more effective way to advance my research through trial and error. For example, when I started researching in the lab I was a little too ambitious, and planned my schedule too tightly. I sometimes felt tired and depressed when my research was not right on schedule, as is often the case. In these negative moods I couldn’t enjoy my work, so I adopted a schedule with more free time. Because of this change, I’ve come to be able to work flexibly and keep a positive frame of mind.

I’m home between 10pm and midnight. At home, I have a late dinner and take a good long soak in the bath (my favorite time of day!). I go to bed at 2am.

Free weekends!

On weekends I enjoy playing badminton, learning traditional Japanese dance and shopping. I try to make plans without lab work as much as I can, however I’m not able to do avoid it sometimes when I am struggling to get new data before academic conferences and progress reports. Leaving the lab allows me to get rid of stress and feel refreshed for a healthy next week. Furthermore, I devise ways to work more efficiently on weekdays, because I am required to take time off at the weekends.

Treasure every encounter

My boss always says, “It is important to value encounters with people and things.” It wasn’t until recently that I finally understood that message! I have found that experiments may not always work well, but when I look at it from a different angle, even experiments that haven’t gone the way I’d wanted could make me aware of something new and interesting. This awareness could also be brought about through discussions with others.

I am grateful for being able to receive this opportunity. Thank you.


Akiko Nakazaki is in the first year of her doctoral program in the Department of Botany, Graduate School of Science, Kyoto University, Japan.

 

Round-up of Fascination of Plants Day 2016

By | Blog, GPC Community

On May 18th, botany geeks around the world shared their love of plants in this year’s Fascination of Plants Day! Here’s our round-up of some of the best #fopd tweets!

First things first, test your skills with this challenging plant science quiz:

Check out some of the amazing work done by Botanic Gardens Conservation International (BGCI):

Have you read this thought-provoking post from The Guardian?

Check out these amazing ears of maize! 

Read on to learn how signals are converted to epigenetic memory:

More from BGCI:

Includes the amazing subheading “Ovules before brovules”!:

Great to hear from some of our younger plant scientists:

Some fun facts to share with your friends:

A fantastic image featuring the adaptations of marram grass to its sand-dune home:

This fascinating mutation results from an elongated apical meristem:

How long does this starch need to last? Plants use their internal circadian clock to ration their energy stores:

The loblolly pine’s genome is over seven times larger than yours!

Need more Fascinating Plants? There are lots of great ‘Roots and Shoots’ articles on eLife‘s Medium page

How did you celebrate Fascination of Plants Day this year? Let us know in the comments below!

Choosing your growth media for plant science

By | Blog, Future Directions

Considering its weedy nature, Arabidopsis thaliana is a fussy little plant. This can be a pain – even tiny environmental fluctuations can have significant impacts on the physiology and development that many of us are investigating.

As silly as it sounds, my labmates and I have spent many months debating the best compost media to use when growing Arabidopsis for research. It began when our trusted compost supplier changed the formula of its peat-based compost, which stressed our plants and turned them a lovely shade of purple! The conversation has continued to develop as we learn about the different media used in other laboratories.

A new paper from Drake et al. at my university (University of Bristol, UK) has added a new depth to the debate, so I thought I’d bring it all to your attention and perhaps receive some other suggestions to consider!

 

Peat-based vs non-peat compost

Arabidopsis growth media

Arabidopsis growth on peat-based and peat-free growth media. Drake et al., 2016.

The experiment, led by Dr Antony Dodd, was designed to test whether peat-based composts could be replaced by alternatives in Arabidopsis research, in an attempt to reduce plant science’s use of unsustainable peat extraction. The researchers grew two ecotypes of Arabidopsis (Col-0 and Ler) on both autoclaved and non-autoclaved composts, including peat-based compost and some formed of coir, composted bark, wood-fiber, and a domestic compost.

In terms of reducing peat use, Arabidopsis unfortunately grew best on the peat-based growing media, although some vegetative traits were comparable in some peat-free composts.

 

Autoclaving compost

This study caught my eye for another reason, however. We always sterilize our compost before growing Arabidopsis to reduce its contamination by fungi and insect pests; however, after learning that manganese toxicity can become a problem, we no longer autoclave it. As you can see in Boyd’s 1971 paper, manganese is converted to a more bioavailable form during the autoclave process, which can be toxic to plants.

Interestingly, Drake et al.’s research revealed no differences in Arabidopsis growth on autoclaved vs. non-autoclaved media, but I expect that in other environmental conditions the elevated manganese availability could become a problem. They did find that the autoclaved soil actually had more issues with mildew and algae, possibly because the natural microbiota had been killed and the compost was therefore easier to colonize.

 

Insecticide treatment

One of the biggest issues our lab has with non-autoclaved soil is the presence of small insects, which can predate our precious plants. A potential alternative to autoclaving is to treat the media with insecticide, such as imidacloprid, a neonicotinoid. However, many labs have stopped using these pesticides; in 2010, Ford et al. showed that several neonicotinoids, including imidacloprid, induce salicylate-associated plant defense responses associated with enhanced stress tolerance, while in 2012, Cheng et al. found 225 genes were differentially expressed in rice plants treated with imidacloprid. In experiments designed to measure precise physiological responses, I’m not convinced that it’s a good idea to use these pesticides!

 

Potential alternatives

To avoid using autoclaves and insecticides, you could consider baking compost overnight at 60°C (140°F) to try and kill fungal spores and insects, freezing the media, and/or using biocontrols to tackle insect pests, such as nematodes or mites.

In the peat vs. non-peat debate, it looks as though peat-based media are still the frontrunners in terms of compost, but hydroponic systems are becoming more popular as a way of tightly controlling nutrient regimes and manipulating whole plants more easily. Check out this video from Associate Professor Matthew Gilliham (University of Adelaide, Australia) to learn more about the technique:

If you have any other suggestions, please leave a comment and share your methods and ideas!

Witty gene names

By | Blog, GPC Community

It is a well known fact that biologists are a clever bunch. Most of the time they’re out applying their intellect and tackling the world’s problems, but occasionally (probably at happy hour on a Friday evening) they sit around coming up with witty names for genes.

Drosophila (fruit fly) geneticists have some classics, including the tinman mutant (which lacks a heart), Smaug (represses the ‘dwarves’ – Nanos), and the tribbles mutant (which has out of control cell division – don’t add water!).

Don’t worry though – plant scientists have come up with some clever gene names of their own! I asked the #plantsci community on Twitter for their favorites:

The superman mutant in Arabidopsis lacks the female parts of the flower, replacing it with more stamens. Fairly funny on its own, but naming its suppressor KRYPTONITE was even better!   

Like the 1970s TV cop Kojak, the kojak mutant is completely (root) hairless! In contrast, the werewolf  mutant produces LOTS of root hairs.

kojak

The kojak mutant (B) is completely bald! Image credit: Favery et al., 2001 and Universal Television

 

Ah yes, we can partially blame GPC’s Ruth Bastow for this one as she was co-first author on the discovery paper! TIMING OF CAB EXPRESSION1 (TOC1) had been shown to be involved in the circadian clock, and when Ruth and her colleagues discovered a gene that appeared to regulate TOC1, they named it TIC for the clever TIC-TOC of the circadian clock, then fit the full name (TIME FOR COFFEE) around it! The official reason was, “We located TIC function to the mid to late subjective night, a phase at which any human activity often requires coffee”. Hmm!    

My thesis is on stomatal development, so these are close to my heart! The word ‘stoma’ is  ancient Greek for ‘mouth’, so lots of stomata genes are mouth-based puns!

Where does YODA fit into this, you ask? This gene is the (Jedi) master regulator of stomatal development, of course!

tmm

The too many mouths mutant produces too many stomata. Image credit: Guseman et al., 2010.

 

In the run-up to the Brexit referendum on the United Kingdom leaving the European Union, SCHENGEN is a topical choice! This gene is involved in establishing the Casparian Strip, a lignified type of cell wall located in the endodermis. The schengen mutants don’t form this barrier, so were named after the Schengen Agreement that ‘established a borderless area between European member states’.  

Lisa’s spot on with these. The pennywise mutation was discovered first, named after a band, then when a paralogous gene was identified by the same authors, they continued the finance theme with POUND-FOOLISH.

The armadillo mutant in Drosophila has abnormal segment development, which looks a little like the armor plating of an armadillo. This protein contains ‘Armadillo repeats’, which is actually found in a huge variety of species including plants. The ARABIDILLO genes in Arabidopsis promote lateral root development, while PHYSCODILLO genes affect early development in the moss Physcomitrella patens.

 

Thanks, Ian!

Thanks to everyone who participated in this list. If you have a favorite whimsical gene name that hasn’t been mentioned, let us know in the comment section!

A year at the Global Plant Council

By | ASPB, Blog, GPC Community

Last April I joined the Global Plant Council as a New Media Fellow along with Sarah Jose from the University of Bristol. The GPC is a small organization with a big remit: to bring together stakeholders in the plant and crop sciences from around the world! As New Media Fellows, Sarah and I have have assisted in raising the online profile of the GPC through various social media platforms. We wrote about our experiences in growing this blog and the GPC Twitter and Facebook accounts in the The Global Plant Council Guide to Social Media, which details our successes and difficulties in creating a more established online presence.

 

Why do it?

My wheat growing in Norfolk field trials. I have spent every summer for the past 3 years out here analysing photosynthesis and other possible contributors to crop yield

My wheat growing in Norfolk field trials. I have spent every summer for the past 3 years out here analysing photosynthesis and other possible contributors to crop yield

I chose to apply for the fellowship during the third year of my PhD. Around this time I had started to consider that perhaps a job in research wasn’t for me. It was therefore important to gain experience outside of my daily life in the lab and field, explore possible careers outside of academia and of course to add vital lines to my CV. I still loved science, and found my work interesting, so knew I wanted to stay close to the scientific community. Furthermore, I had always enjoyed being active on Twitter, and following scientific blogs, so the GPC fellowship sounded like the perfect opportunity!

 

The experience

I think I can speak for both Sarah and myself when I say that this fellowship has been one of the best things I’ve done during my PhD. Managing this blog for a year has allowed me to speak to researchers working on diverse aspects of the plant sciences from around the world. My speed and writing efficiency have improved no end, and I can now write a decent 1000 word post in under an hour! I discovered the best places to find freely available photos, and best way to present a WordPress article. Assisting with Twitter gave me an excuse to spend hours reading interesting articles on the web – basically paid procrastination – and I got to use my creativity to come up with new ways of engaging our community.

Next career move, camera woman?

Filming interviews at the Stress Resilience Forum. Next career move, camera woman?

Of course going to Brazil for the Stress Resilience Symposium, GPC AGM and IPMB was a highlight of my year. I got to present to the international community both about my own PhD research and the work of the GPC, Sarah and I became expert camera women while making the Stress Resilience videos, and I saw the backstage workings of a conference giving out Plantae badges on the ASPB stand at IPMB. It didn’t hurt that I got to see Iguassu Falls, drink more than a few caipirinhas and spend a sneaky week in Rio de Janeiro!

Helping out on the ASPB stand

Helping out on the ASPB stand with Sarah

 

Thank you

Working with the GPC team has been fantastic. I learnt a lot about how scientific societies are run and the work they do by talking to the representatives from member societies at the AGM. The executive board have been highly supportive of our activities throughout. Last but not least, the lovely GPC ladies, Ruth, Lisa and Sarah have been an amazing team to work with – I cannot thank you enough!

I have now handed in my PhD, left the GPC, and moved on to a new career outside of academic research. I’m going into a job focused on public engagement and widening access to higher education, and have no doubt my GPC experiences have helped me get there. My advice if you’re unsure about where you want to end up after your PhD? Say “yes” to all new opportunities as you never know where they will take you.

Thank you the GPC! Hopefully I’ll be back one day!

 

Thank you! It's been amazing!

Thank you! It’s been amazing!

Flowers of the Global Plant Council

By | Blog, GPC Community

A while ago we published a blog post about the sequencing of the Bauhinia genome. Bauhinia x blakeana is the national flower of Hong Kong, so naturally this sparked our interest in the global importance of flowers as national symbols, such as the English rose. Here we list just a few of the more interesting and unusual plants that are the national symbols of countries hosting GPC member organizations.

India       Indian Society for Plant Physiology

Nelumbo nucifera

The Lotus Plant

The Lotus Plant (Nelumbo nucifera) is an aquatic plant in the Nelumbonaceae family, and is the national flower of India and Vietnam. Image by alterna used under Creative Commons 2.0.

The lotus plant (Nelumbo nucifera) is considered sacred in the Buddhist and Hindu religions, and been used for over 7000 years in Asia as a source of food, herbal remedy and fibers for clothing. In 2013 its genome was sequenced, allowing its phylogenetic history and adaptations for the aquatic environment to be more fully understood.  For example, the plant has a number of genes enabling its adaptation to the nutrient poor soils in waterways, altering its novel root growth, iron regulation and phosphate starvation.

Researchers at the University of Adelaide, Australia, showed that the lotus actually has the ability to regulate the temperature of its flowers, maintaining them between 30 and 36 °C even when air temperature dropped below this. Quite how or why it does this is still unknown, but warmer flowers could play a role in attracting cold-blooded insects and increasing their activity once on the flowers to enhance pollination. An alternative explanation could be that warmer temperatures are required for pollen production.

Another fantastic fact about the lotus is seed viability. A 1300 year old lotus fruit found in a dry lakebed in China was successfully germinated, providing an insight into the aging process of fruits and other organisms

Australia      Australian Society of Plant Scientists

Acacia pycnantha

Acacia

The golden wattle (Acacia pycnantha) is a member of the Fabaceae family. The plant is a small tree that can grow up to 12 meters high! In Australia the 1st September is National Wattle Day. Image by Sydney Oats used under Creative Commons 2.0.

The Australian national flower is the Acacia pycnantha, or wattle, first described in 1942. Its name comes from the Greek pyknos (dense) and anthos (flowers) describing the dense groups of flowers that form on the tree. The wattle is an important source of tannins, and as such has been introduced to parts of southern Europe such as Italy and Portugal in addition to India and New Zealand. The wattle is also found in South Africa where it has now become an invasive pest, and various methods of biological control such as gall forming wasps (Trichilogaster signiventris) are being used to control populations.

Galls on Acacia

Galls on a wattle tree from T. signiventris. Eggs are laid by the wasp in the buds of flower heads and the hatched larvae induce gall formation which prevents flower development. This in turn prevents pollination and continued propagation of the Wattle population. Image by Sydney Oats used under Creative Commons 2.0.

Japan      The Japanese Society of Plant Physiologists

Yellow Chrysanthemum

Yellow Chrysanthemum

The yellow Chrysanthemum is a member of the Asteraceae family. Species of the Chrysanthemum enus are popular ornamental plants, and as such many hybrids and thousands of cultivars in a variety of colors and shapes can be found. Image by Joe deSousa used under Creative Commons 1.0.

Although cherry blossom is often the flower most associated with Japan, yellow Chrysanthemum flowers are equally as important. The flower is used as the Imperial Seal of Japan and on the cover of Japanese passports. Species of the genus Chrysanthemum are members of the Asteraceae (daisy) family.

Two species of the Chrysanthemum genus, C. cinerariifolium and C. coccineum, synthesize pyrethrum compounds, which attack insect nervous systems. As such these species make good companion plants in the field, repelling insects from economically valuable neighboring plants that do not have their own defense mechanisms. The naturally produced toxins are widely used in organic farming, and many synthetic versions are also available commercially.

South Africa      African Crop Science Society

Protea cynaroides

King Protea

The king protea (Protea cynaroides)  is a member of the Proteaceae family and the national flower of South Africa. The South African cricket team has the nickname the Proteas, after the flower. Image by Virginia Manso, used under Creative Commonds 2.0.

The king protea (Protea cynaroides) can grow up to 2 meters in height and comes in several colors and varieties. The plant grows in harsh, dry regions prone to wildfire, and as such has a number of adaptations for the environment. For example, a long tap-root is used for accessing deep water, and tough leathery leaves are resilient to both biotic and abiotic stress. The protea has a thick underground stem with many dormant buds. After a wildfire these dormant buds can become active, forming new stems allowing the plant to survive!

The king protea is only one species within the large Proteaceae family, 120 species of which are now endangered listed on the IUCN Red List of threatened species. The Protea Atlas Project aims to map the geographical location of proteas through Southern Africa in order to help preserve the family. In addition to protea, Southern Africa is home to around 24 000 plant taxa, 80% of which occur no where else in the world. A wider objective of the Protea Atlas Project is to map species-richness patterns in Southern Africa. The distribution of Protea plants within the region largely seems to match the species-richness patterns of other plant species, and therefore proteas are being used as surrogates for plant diversity. Find out more about the project and get involved here.

Germany and Estonia      EUCARPIA, EPSO, FESPB, SPPS

Centaurea cyanus

Cornflower

The cornflower (Centaurea cyanus) is a member of the Asteraceae family, like the Chrysanthemum. Image by Anita used under Creative Commons 2.0.

We have a large number of European and Scandinavian member groups, and choosing one flower to represent all of those was a challenge. However, the humble Cornflower seemed an appropriate choice to represent our European societies. This member of the daisy family is not only the national flower of Germany and Estonia, but has a place in many Scandinavian cultures being the symbol for a number of political parties in Finland and Sweden.

In the past this beautiful flower was regarded as a weed, but now due to intensive agricultural practices has become endangered. Cornflowers have many uses in addition to being an ornamental plant. The plant is used in many blends of herbal tea, flowers are edible in salads, and the blue coloring can be used as a clothes dye.

Canada           Canadian Society of Plant Biologists

Acer 

Although not technically a flower, the leaf of the maple tree  is such an iconic symbol on the Canadian flag we just had to include it (we are the Global Plant Council after all). There are many species of maple tree in the genus Acer, which can be distinguished from other genus of trees by their distinctive leaf shape. The most important species of maple in Canada is probably Acer saccharum, the sugar maple. The sap of this species is the major source of maple syrup, and its hard wood is popular for use in flooring and furniture.

Maple

Acer saccharum, the sugar maple, in Autumn. Image by Mark K. used under Creative Commons 2.0.

The sugar maple grows throughout the USA and Canada, favoring cooler climates and is a very shade tolerant species.  Despite this, the sugar maple is now in decline in many regions. It is highly susceptible to increased levels of air pollution and changes to salt levels. As such the species is now being replaced in many regions by the hardier Norway Maple.

Argentina                  Argentinian Society of Plant Physiology

Erythrina crista-galli 

E. crista-galli, the cockspur coral tree, is the national tree in Argentina. Also known in Argentina as the ceibo, the bright red flower of this tree is also the national flower of Argentina and Uruguay.

Cockspur

The bright red flowers of E.crista-galli are the national flowers of Argentina and Uruguay. Image by Gabriella F.Ruellan used under Creative Commons 2.0.

The small tree is a legume from the family Fabaceae. Characteristically of species from this family, the fruit of the cockspur coral tree are dry pods, and the roots have nodules containing nitrogen fixing bacteria making them important for increasing the available nitrogen in the soil. Although native to South America, the tree is also naturalized in Australia, where it is becoming an emerging environmental weed. The tree is invading waterways and wetlands displacing native species, and its spread is now being controlled in New South Wales.

If your country has a particularly interesting national flower that we have missed let us know! Perhaps we can include it in a future blog post.

Connecting Plant Science Researchers, Entrepreneurs and Industry Professionals

By | Blog, Canadian Society of Plant Biologists, Scientific Meetings
From Lab Bench to Boardroom

From Lab Bench to Boardroom workshop at Botany 2015

This blog post was written by Amanda Gregoris and R. Glen Uhrig who organized a workshop entitled “Lab Bench to Boardroom” at the Botany 2015 meeting in Edmonton, Alberta, Canada.

Our motivation behind holding this workshop was to engage graduate students and post-doctoral fellows to consider the science behind biotechnology. We designed this workshop to be an opportunity to expose students and post-doctoral fellows to how industry experts and entrepreneurs develop ideas, and how they refine those ideas to make them attractive business opportunities for investors. We created an environment where students and post-doctoral fellows could ‘pitch’ their own plant science business ideas to a panel of industry experts. Through cooperative idea development with the panel and audience members, presenters were able to learn how to evolve their ideas, as well as how their peers viewed their proposed ideas.

Workshops such as Lab Bench to Boardroom are of central importance given the limited availability of academic positions. In light of this fact, students and post-doctoral fellows alike need to consider career options outside of academia prior to completion of their degrees, contracts or fellowships. It is imperative that early career researchers invest time to maximize long-term career outcomes. Workshops like ours and others assist in this by developing a thorough understanding of the non-academic opportunities available.

If you are an early career researcher looking to move away from academia, some industry positions for graduates and post-doctoral fellows may include:

  • research and development,
  • quality control,
  • marketing,
  • market research analyst,
  • business development manager,
  • competitive intelligence analyst,
  • product manager, and
  • management consulting.

Notice that these opportunities are not only based at the lab bench, but can be in more managerial or consulting positions. Your experiences as a researcher have given you highly valued skills, so don’t limit your options! Of course, industry is not the only option, and other opportunities may include working in a government lab, public policy, science writing, herbarium curation or patent agent.

The question of whether enough is being done to inform graduate students and post-doctoral fellows of alternative, non-academic career paths is one often asked, and is one that varies by institution. In our experience, universities have taken a largely standard approach, offering lectures by professionals from industry, as well as informal social gatherings aimed at connecting students to industry. Although these are good opportunities, they represent just the tip of the iceberg in terms of what could be done to inspire entrepreneurship amongst the upcoming generation of plant scientists, and better assist them with the transition from an academic focus to an industry focus.

Workshop concepts similar to Lab Bench to Boardroom could be developed at the departmental level, or by university career centers, to allow graduate students and post-doctoral fellows to gain an elevated understanding of non-academic career opportunities. Some universities have made great strides in this area, creating internship resources for current graduate students in the areas of biotechnology and public policy. Along these lines, university career centers will usually have databases of current job postings that can assist students in the search for life after grad school.

In the end, it is imperative that universities, governments and industry continue to work to develop strategies that assist graduate students and post-doctoral fellows in the transition from academics to successful non-academic careers. This can be accomplished either individually, or through partnerships between these groups. We believe that developing these strategies is undoubtedly essential to the sustainable development of new ideas and technologies in the plant sciences that will be required to address the current and future needs of society.

 

Amanda Gregoris is a Ph.D. candidate in the Department of Biological Sciences at the University of Alberta, Canada and Dr. R. Glen Uhrig is a post-doctoral fellow at the ETH Zurich, Switzerland. Both are members of the Canadian Society of Plant Biologists

Glen Uhrig

Glen Uhrig

Amanda Gregoris

Amanda Gregoris