A team of scientists has developed a way to potentially thwart the spread of a disease-causing bacterium that harms more than 100 plant species worldwide, an advance that could save the nursery industry billions a year.
Some plants, like soybean, are known to possess an innate defense machinery that helps them develop resistance against insects trying to feed on them. However, exactly how these plants recognize signals from insects has been unknown until now. Scientists uncover how oral secretions of the cotton leaf worm trigger defense responses in a plant.
As a plant grows, it moves cellular material from its version of manufacturing sites to the cell wall construction zone. Transporter proteins, called motor proteins, are thought to move these cell wall cargo via a complex highway system made up of microtubule tracks. The position of these tracks must be stabilized so that cargo are delivered to the correct locations.
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth. Although this has long been common knowledge, scientists have only recently described the mechanism in detail. With biotechnology, this knowledge could now help make agriculture more sustainable.
How do plants know when it is time to flower? Researchers have studied this question and identified two genes that are key to this process. They were able to show that the ELF3 and GI genes control the internal clock of the plants that monitors the length of daylight and determine when it is the right time to flower.
High-throughput analyses of small substances in Nicotiana attenuata reveal that plants re-organize their metabolism to produce highly-specific defense metabolites after insect attack
Researchers have discovered a new species of seaweed Calidia pseudolobata as well as four new genera of red algae from the warm waters of China. The research suggests there are many new species yet to be discovered – with potential implications for marine biodiversity and food security.
Plant leaves exhibit a great diversity of forms that can be grouped into two types: simple leaves with a single blade and compound leaves with multiple units termed leaflets. A major question for plant developmental biologists is the molecular mechanism underlying diversity of compound leaf form during evolution.
A webtool giving an overview of climate change in Europe and predicting subsequent developments was created as a joint collaboration between French, Spanish, German and Estonian researchers.
By manipulating the expression of one gene, geneticists can induce a form of “stress memory” in plants that is inherited by some progeny, giving them the potential for more vigorous, hardy and productive growth, according to researchers, who suggest the discovery has significant implications for plant breeding. And because the technique is epigenetic — involving the expression of existing genes and not the introduction of new genetic material from another plant — crops bred using this technology could sidestep controversy associated with genetically modified organisms and food.