Category

CEPLAS

A guide through the genome of crops

By | Agriculture, CEPLAS, News

Plants show enormous variety in traits relevant to breeding, such as plant height, yield and resistance to pests. One of the greatest challenges in modern plant research is to identify the differences in genetic information that are responsible for this variation. A research team has now developed a method to identify precisely these special differences in genetic information. Using the example of maize, they demonstrate the great potential of their method and present regions in the maize genome that may help to increase yields and resistance to pests during breeding.

Read More

Identifying highly recombinant plants for breeding

By | Agriculture, CEPLAS, News

For plant breeding, it is important to create as many combinations as possible of genetic variants within a short time to select the most suitable candidates between plants with many different characteristics. A working group has now developed a method for using natural variations to identify what are referred to as ‘highly recombinogenic individuals’.

Read More

Turning problems into opportunities : Photorespiration for improved plant metabolism

By | CEPLAS, News, Plant Science

In the quest for more sustainable agriculture, improved crops with reduced photorespiration, a highly energy-consuming process, hold enormous potential. Researchers have now succeeded in developing a solution that connects photorespiration and C4 metabolism, two of the main targets for improving crop yield. This first proof of concept opens the door to plants with enhanced productivity and reduced consumption of resources.

Read More

How plants ensure regular seed spacing

By | Agriculture, CEPLAS, Future Directions, News, Plant Science, Research

An international team of researchers led by biologists has examined how seed formation is coordinated with fruit growth. In their report, they explain the genetic control mechanisms underlying the process. If you open up a pea pod, you will find that all of the peas inside are the same size and the same distance apart. The same is true of princess beans, runner beans and soybeans as well as various other peas and beans, and it also applies to non-pulses. This is surprising because both the seed size and number and the pod size differ substantially from one variety to the next.

Read More

Rice Cultivation: Balance of Phosphorus and Nitrogen Determines Growth and Yield

By | CEPLAS, News

Cluster of Excellence on Plant Sciences CEPLAS cooperates with partners from Beijing to develop new basic knowledge on nutrient signalling pathways

In the future, a newly discovered mechanism in control of plant nutrition could help to achieve higher harvests in a sustainable way. Scientists from Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing (China) discovered this mechanism in their research on Asian rice in collaboration with Professor Dr Stanislav Kopriva from the University of Cologne’s Botanical Institute and the Cluster of Excellence CEPLAS. The balance between nitrogen (N) and phosphorus (P) is decisive for crop yield. Both nutrients, which the plant absorbs from the soil through its roots, interact more strongly with each other than previously known. The study ‘Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants’ has now appeared in the journal ‘Nature Plants’.

Kopriva said: ‘For healthy and optimal growth, all living beings need a good balance of minerals. However, we know very little about how plants achieve this balance.’ His colleagues in Beijing had observed that the addition of phosphate only had a positive effect on plant growth and yield if a sufficient amount of nitrogen was also available in the soil. ‘Together, we have now discovered the mechanism by which nitrogen controls the absorption of phosphate’, Kopriva remarked.

A detailed analysis at the molecular level revealed an entire signalling chain that the plant sets in motion – from the sensor that recognizes nitrate quantities to factors that enable the synthesis of the so-called transporters that carry the phosphate into the plant. Kopriva explained: ‘Although most of the components were already known individually, it was only through this work that they were brought together into a signalling pathway. This gives us a completely new understanding of how to control plant nutrition. In addition, it enables specific manipulations to either couple the uptake of both nutrients more closely or to separate them from each other – depending on how nutrient-rich the soil on which the rice grows is.’

Professor Dr Stanislav Kopriva from the Botanical Institute of the University of Cologne is co-speaker of the Cluster of Excellence on Plant Sciences CEPLAS at the Universities of Düsseldorf and Cologne. CEPLAS wants to develop basic knowledge about ‘SMART Plants for Tomorrow’s Needs’.

Read the paper: Nature Plants

Article source: University of Cologne

Image: Mufid Majnun / Pixabay