The global decline of pollinators threatens the reproductive success of 90 per cent of all wild plants globally and the yield of 85 per cent of the world’s most important crops. Pollinators – mainly bees and other insects – contribute to 35 per cent of the world’s food production. The service provided by pollinators is particularly important for securing food produced by the more than two billion small farmers worldwide.
It is commonly assumed that any important scientific knowledge would be available in English, and so scientific knowledge used in international studies is predominantly sourced from English-language documents. But is this assumption correct? According to new research the answer is no, and science written in languages other than English may hold untapped information crucial to the conservation of global biodiversity.
Coconut trees grow slowly and are difficult to clone. Scientists have developed a method to multiply seedlings faster and conserve coconut genetic resources for the long term. This will help to preserve coconut tree biodiversity and meet the increasing demand for coconuts and derived products.
The current world population of 7.8 billion is predicted to reach 10 billion by 2057. Future access to affordable and healthy food will be challenging, with malnutrition already affecting one in three people worldwide. Two new papers recognized that global crop production systems need to expand their outputs sustainably to feed this rapidly growing human population.
Scientists have become the first in the world to find a way to observe how plant roots take in and circulate water at the cellular level, which could help to identify future drought- and flood-resistant crops.
Manipulating RNA can allow plants to yield dramatically more crops, as well as increasing drought tolerance, announced a group of scientists recently.
As temperatures rise, the risk of devastating forest fires is increasing. Researchers are using artificial intelligence to estimate the long-term impact that an increased number of forest fires will have on forest ecosystems. Their simulations show how Yellowstone National Park in the USA could change by the end of the century.
A new study sheds light on how plants respond to stressful environmental conditions presented by climate change. Researchers showed that plants grown in drier conditions simulating the effects of climate change exhibited higher costs of reproduction than those grown under current conditions. The findings offer clues about how plant populations might respond to climate change and could provide guidance for developing conservation strategies.
As the world continues to warm, many arid regions that already have marginal conditions for agriculture will be increasingly under stress, potentially leading to severe food shortages. Now, researchers have come up with a promising process for protecting seeds from the stress of water shortage during their crucial germination phase, and even providing the plants with extra nutrition at the same time.
Scientists are observing changes in the Earth’s climate in every region and across the whole climate system, according to the latest Intergovernmental Panel on Climate Change (IPCC) Report, released today. Many of the changes observed in the climate are unprecedented in thousands, if not hundreds of thousands of years, and some of the changes already set in motion—such as continued sea level rise—are irreversible over hundreds to thousands of years.