Deprived of sunlight, plants are unable to transform carbon dioxide from the atmosphere into sugars. They are essentially starved of one of their most important building blocks. The plant’s not-so-secret weapon to combat this and other scarcity is autophagy. Similar to recycling, autophagy helps break down damaged or unwanted pieces of a cell, so that building blocks can be used again. New research shows that plants that lack the core components for autophagy have to get creative about recycling nutrients like carbon when they’re left in the dark.
Researchers have found a way to engineer more efficient versions of the plant enzyme Rubisco by using a red-algae-like Rubisco from a bacterium. For 50 years scientists have striven to boost the activity of Rubisco, a promising target to increase crop production, as it controls how much and how fast plants fix carbon dioxide from the atmosphere into sugars and energy during photosynthesis.
Drought causes major crop losses in many regions of the world, and climate change threatens to exacerbate the occurrence of drought in temperate as well as arid regions. Researchers used a sophisticated mathematical modelling approach to study the effects of introducing CAM photosynthesis, which is used by plants that are able to thrive in arid conditions, into C3 plants, which tend to thrive only in areas where sunlight intensity and temperatures are moderate and water is plentiful.
Genome duplications play a major role in the development of forms and structures of plant organisms and their changes across long periods of evolution. Biologists made this discovery in their research of the Brassicaceae family. To determine the scope of the different variations over 30 million years, they analysed all 4,000 species of this plant family and investigated at the genus level their morphological diversity with respect to all their characteristic traits.
Scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields. Scientists have known that crop yields would increase if they could accelerate the photosynthesis process, where plants convert carbon dioxide (CO2), water and light into oxygen and eventually into sucrose, a sugar used for energy and for building new plant tissue.
Bacteria recently isolated from walnut (Juglans regia L.) buds in Portugal has been identified as a new species of Xanthomonas. Interestingly, this new species baptised as Xanthomonas euroxanthea includes both pathogenic and non-pathogenic strains on walnut, constituting a unique model to address the emergence and evolution of pathogenicity in Xanthomonas.
The collaboration revealed that the symbiotic relationship between plants and fungi provides nitrates to plants, which could lead to reduced fertilizer use.
A research group has succeeded in greatly increasing the catalytic activity of Rubisco, the enzyme which fixes carbon from CO2 in plant photosynthesis. The research team also hypothesized the mechanism which determines the catalytic activity of Rubisco, based on structural analysis of the proteins.
An international team of researchers led by biologists has examined how seed formation is coordinated with fruit growth. In their report, they explain the genetic control mechanisms underlying the process. If you open up a pea pod, you will find that all of the peas inside are the same size and the same distance apart. The same is true of princess beans, runner beans and soybeans as well as various other peas and beans, and it also applies to non-pulses. This is surprising because both the seed size and number and the pod size differ substantially from one variety to the next.
Plants are able to keep growing indefinitely because they have tissues made of meristems–plant stem cells–which have the unique ability to transform themselves into the various specialized cells that make up the plant, dividing whenever appropriate and producing new cells of whatever type as needed. Meristems exist at the tips of all plants, allowing them to grow new stems or new roots, and, in trees, also in the trunk, where they add extra girth.