Botanists have long held a fascination for heterotrophic plants, not only because they contradict the notion that autotrophy (photosynthesis) is synonymous with plants, but also because such plants are typically rare and ephemeral. However, it is still a matter of debate as to how these plants obtain nutrition.
Field trials show that poplar trees can be genetically modified to reduce negative impacts on air quality while leaving their growth potential virtually unchanged
The synchronization of seed production by trees has garnered attention due to its importance in agriculture, forestry and ecosystem management. Therefore, understanding the timing and mechanisms that contribute to synchronized seeding can be a useful management tool.
A new study shows that lodgepole pine trees with larger resin ducts survived beetle attacks that killed trees with smaller ducts. Located in the needles, branches, trunk and roots, the ducts act like highways to carry sticky, toxic resin to whatever part of the tree is being attacked.
The catastrophic bushfires raging across much of Australia have not only taken a huge human and economic toll, but also delivered heavy blows to biodiversity and ecosystem function. Scientists are warning of catastrophic extinctions of animals and plants.
The oldest living organism on Earth is a plant — Methuselah, a bristlecone pine (Pinus longaeva, pictured above) that is more than 5,000 years old. Conversely, animals only live up to a few hundred years. Can we learn something from plants about longevity and stay young forever — or even recapture lost youth?
Oaks have a complex evolutionary history that has long eluded scientists. New research, however, provides the most detailed account to date of the evolution of oaks, recovering the 56-million-year history that has made the oaks one of the most diverse, abundant and important woody plant groups to the ecology and economy of the northern hemisphere.
A new study reveals a complex interplay between soil fungi and tree roots that could be the cause of rare-species advantage. The researchers found that the type of beneficial soil fungi living around tree roots in a subtropical forest in China determined how quickly the trees accumulated harmful, pathogenic fungi as they grew. The rate of accumulation of pathogenic fungi strongly influenced how well the trees survived when growing near trees of the same species.
Removing dead trees from the forests and reforesting on a large scale: this is the German Federal Government’s strategy against “Forest Dieback 2.0”. Scientists call for other solutions.
Before Europeans arrived in America, longleaf pine savannas sprawled across 90 million acres from present-day Florida to Texas and Virginia. Today, thanks to human impacts, less than 3 percent of that acreage remains, and what’s left exists in fragmented patches largely isolated from one another.