Commentary on Gobert et al. The authors prove the feasibility of an idea through this proof-of-concept work. As they point out, plant antiviral treatments are usually virus-specific, unfortunately for the moment a ‘broad-spectrum’ plant antiviral does not exist.
Grapevine (Vitis vinifera L.) is a crop of great economic and agricultural value throughout the world. In 2019, the International Organisation of Vine and Wine (OIV) reported that over 7 million hectares are dedicated to the cultivation of this crop, resulting in the global production of about 78 million tonnes of grape and 292 million of hectolitres of wine. However, a production of this magnitude is possible thanks to the massive use of pesticides to counteract various diseases that can affect grape yield. Indeed, pesticide applications are at the basis of intensive agriculture, as they guarantee protection from pathogens, pests and weeds. In absence of pesticide applications, farmers could experience up to 40% of production losses in a single year.
The effective management of plant diseases is of fundamental importance for forestry, food, and other plant-derived product productions, as well as for the sustainability of natural environments. Changing global climate patterns and the trade of planting materials across the borders are causing plant pathogens to rapidly move and evolve. That is plant pathogens, are changing their behavior, survival, reproduction, and mode of action in the host plants.
How do plants sense their environment? How do they cope with different challenges, like competition for resources or pest attacks? In a new study researchers explain the role of ST2a, a gene up-regulated by plant proximity cues, which participates in the inactivation of jasmonates –a group of regulators that orchestrate defense responses. This way they manage to demonstrate how competition signals promote plant growth at the expense of reduced defenses.