Image: soy plant in the field, with close-up of soybean pod. Credit: Julio César García / Pixabay

BONZAI Genes and Salinity Stress: A Path to Sustainable Agriculture

By | Blog, ECRi, News, Post

In the field of agricultural science, understanding the intricacies of soybean resilience holds profound significance. Soybeans (Glycine max) are a pivotal crop species, highly regarded for their versatility and their substantial contribution to global food and feed supplies, as well as biofuel production. New research aims to shed light on the intricate mechanisms that govern the BONZAI genes, illuminating their pivotal role and the complexities of their regulated expression within saline environments.

Read More

Genetic engineering of chickpea to understand the mystery behind biochemical regulation in flower and seed coat colour of desi and kabuli genotypes

By | Agriculture, Blog, ECRi, Plant Science, Post

Flower and seed coat colour are important agronomic traits in chickpea that influence consumer preference. Based on their cultivation globally, this legume crop is categorized as “desi” or “kabuli”. Seeds of desi-type chickpeas are generally dark brown and angular with a rough seed coat, while the kabuli type produces light-brown coloured and rounded seeds with smooth seed coats. Recently, a group of scientists in India successfully developed a new genetically engineered selection marker-free stable chickpea line.

Read More

If not, Winter: How a super-charged “Speed Vernalization” protocol accelerates flowering in winter cereals

By | Agriculture, Blog, ECRi, Plant Science, Post

As days grow colder and shorter, and many of us find ourselves entrenched in winter, you wouldn’t be mistaken for feeling a noticeable reduction in activity around you. However, in certain crops such as winter wheat and barley, this cold season holds the key to flowering in the spring. This well-studied process, called vernalization, requires the plant to sense appropriate conditions – i.e., low temperature and short day-length – usually early in development to “overwinter” through several inhospitable months.

Read More
small vegetables

Are “Plastic” Plants Our Future? Understanding and studying phenotypic plasticity

By | Blog, ECRi, Plant Science, Post

Phenotypic plasticity in plants occurs at all biological scales in every organism. Phenotypic plasticity is defined as the physical and/or metabolic responses of organisms to their environment. Some plastic responses may be strategies that enhance fitness in specific environments. In contrast, other forms of plasticity may be symptoms of stress or pathology, all of which may develop at different time scales. A recent review highlights the characterization, costs, cues, and future perspectives of phenotypic plasticity.

Read More