For plants, sunlight can be a double-edged sword. They need it to drive photosynthesis, the process that allows them to store solar energy as sugar molecules, but too much sun can dehydrate and damage their leaves. A primary strategy that plants use to protect themselves from this kind of photodamage is to dissipate the extra light as heat. However, there has been much debate over the past several decades over how plants actually achieve this.
Cyanobacteria – colloquially also called blue-green algae – can produce oil from water and carbon dioxide with the help of light. This is shown by a recent study. The result is unexpected: Until now, it was believed that this ability was reserved for plants. It is possible that blue-green algae will now also become interesting as suppliers of feed or fuel, especially since they do not require arable land.
For billions of years life on Earth was restricted to aquatic environments, the oceans, seas, rivers and lakes.
Then 450 million years ago the first plants colonised land, evolving in the process multiple types of beneficial relationships with microbes in the soil.
These relationships, known as symbioses, allow plants to access additional nutrients. The most intimate among them are intracellular symbioses that result in the accommodation of microbes inside plant cells. A study recently published describes the discovery of a common genetic basis for intracellular symbioses.
How do plants sense their environment? How do they cope with different challenges, like competition for resources or pest attacks? In a new study researchers explain the role of ST2a, a gene up-regulated by plant proximity cues, which participates in the inactivation of jasmonates –a group of regulators that orchestrate defense responses. This way they manage to demonstrate how competition signals promote plant growth at the expense of reduced defenses.
Root hairs are tubular polarized extensions of root epidermal cells and are crucial for plant anchorage, nutrient acquisition, and environmental interactions. The plant hormone jasmonate has been reported to promote root hair growth. However, it remains unclear about the molecular mechanisms underlying the stimulation of root hair development by jasmonate.
New research provides a better understanding of how chemicals thought to impart unique health benefits to plants in the cabbage family are broken down to promote growth in conditions lacking sufficient sulfur. This findings could aid in the future development of broccoli and cabbage varieties.
Proteins play a key role in controlling all aspects of life including plants. A team of scientists has now mapped around 18,000 of all the proteins found in the model plant Arabidopsis thaliana
Astronauts in space generally live on processed, pre-packaged space rations such as fruits, nuts, chocolate, shrimp cocktails, peanut butter, chicken, and beef to name a few. These have often been sterilized by heating, freeze drying, or irradiation to make them last and key a challenge for the US Space Agency NASA has been to figure out how to grow safe, fresh food onboard.
Tropical forest trees are the centerpiece of debates on conservation, climate change and carbon sequestration today. While their ecological importance has never been doubted, what has often been ignored is their ability to store cultural heritage. Using recent advances in scientific methods and a better understanding of the growth of these trees, researchers can now uncover, in detail, the growing conditions, including human management, that have occurred around these ancient giants over their centuries-long life span.
Drifting algae in the Austral Ocean can bring invasive species to the Antarctic coasts, according to a new study. The report describes the first scientific evidence of a potentially invasive and colonial species –the marine bryozoan Membranipora membranacea- which reaches the Antarctic latitude islands in macroalgae that drift in the marine environment.