Interest on Jojoba crop was, and still is, jojoba oil, which is not a glyceride fat, but a liquid wax with unique chemical configuration and features. The seeds of jojoba are one of the world’s only known sustainable sources of liquid wax esters and have been used as an eco-friendly replacement for the similar oils.
Researchers have found that in response to the nitrogen demand of leaves, plants produce a hormone that travels from the leaves to the roots to stimulate the uptake of nitrogen from the soil. This hormone is produced in the leaves when they run short of nitrogen, and acts as a signal that regulates the demand and supply of nitrogen between the plant’s shoot and the root.
A group of scientists from Sechenov University, Russia, and La Trobe University, Australia, have developed a fast and cost-effective method of detecting and identifying bioactive compounds in complex samples such as plant extracts. They successfully applied the method to examine Mediterranean and Australian native culinary herbs. Three articles on this work were published in Applied Sciences, Journal of Pharmaceutical and Biomedical Analysis and Journal of Chromatography A.
Since ancient times, people have been using herbs as food additives and medicines, though a search for useful compounds and a study of their properties remain a difficult task. It is possible to examine a compound if it is stable enough and can be separated from other substances in a sample. However, plant extracts contain hundreds of compounds. In the past, only known compounds were investigated by target analysis and most bioactive compounds were left undiscovered. Thus, the number of compounds that are yet to be explored is so huge that methods that can both screen mixtures and identify the compounds responsible for bioactivity are of greater value.
The authors of the papers used an Effect Directed Analysis (EDA) approach, which is a combination of chromatographic separation with in situ (bio)assays and physico-chemical characterisation to discover and identify bioactive compounds in complex plant samples. Thin-layer chromatography (TLC) and high performance thin-layer chromatography (HPTLC) are well established, chromatographic separation techniques ideally suited for high-throughput screening of bioactive compounds in crude samples.
To separate substances, TLC uses the fact that various compounds are transported by a solvent and absorbed by a sorbent at different speeds. A sorbent-coated plate with a studied mixture is immersed with one end in the solvent, and under the action of capillary forces, it begins to rise along the plate, taking the substances of the mixture with it. As they move upward, the compounds are absorbed by the sorbent and remain as horizontal bands that can be distinguished in visible, infrared or ultraviolet light. Using this method, crude extracts can be analysed directly with no preparation and possible loss of sample components.
Bioassays allow to determine the properties of compounds, such as toxicity, observing how model organisms (bacteria, plants or small animals) react to them. In this way, one can select extracts able to inhibit the action of individual enzymes or reactive oxygen species.
Combination of TLC chromatography with microbial (bacteria and yeast) tests and biochemical (enzyme) bioassays enables rapid and reliable characterization of bioactive compounds directly on the chromatographic plates, without isolation/extraction. The advantage of HPTLC is that plates/chromatograms can be directly immersed into enzyme solution (bioassays), incubated for up to several hours, followed by visualization of the (bio)activity profile via an enzyme substrate reaction as bioactivity zones. This approach is more cost effective, enabling a more streamlined method to detect and characterise natural products that are suitable candidates for further investigation as potential new drug molecules.
Using this method, scientists examined the properties of bioactive compounds from culinary herbs commonly used in the Mediterranean diet: basil, lavender, rosemary, oregano, sage and thyme. Australia’s native plants were added to the list: lemon myrtle (Backhousia citriodora), native thyme (Prostanthera incisa), sea parsley (Apium prostratum), seablite (Suaeda australis) and saltbush (Atriplex cinerea). Some of the secondary metabolites from these plants exhibit significant antioxidant activity and enzyme inhibition, like α-amylase inhibition. Therefore, these herbs may be preventive not only against cardiovascular diseases but also type 2 diabetes. The enzyme α-amylase breaks down polysaccharides, thereby increasing blood sugar levels. Recent studies suggest that hyperglycemia induces generation of reactive oxygen species, alteration of endogenous antioxidants and oxidative stress. It was found that patients with uncontrolled sugar levels in addition to diabetes also suffer from accelerated cognitive decline independent of their age. Although Australian native herbs are used as a substitute for related European plants, their medicinal properties are much less studied.
After preparing the extracts, the scientists began to study their composition and qualities. Rosemary and oregano extracts showed the greatest antioxidant activity, while sage, oregano and thyme were the best at slowing down reactions involving α-amylase (extracts from lavender flowers and leaves were the only ones not to show this effect). Among the studied Australian native herbs, lemon myrtle showed the strongest antioxidant properties, with the best α-amylase inhibition observed with extracts of native thyme (this property was noticed for the first time), sea parsley and saltbush.
The study of plant extracts using bioassay and thin-layer chromatography allows scientists to examine a variety of compounds, find mixtures that have the desired properties and isolate substances that exhibit them to the greatest extent. This fast and cost-effective method will be useful for finding new drug compounds.
Read the papers: Applied Sciences, Journal of Pharmaceutical and Biomedical Analysis and Journal of Chromatography A.
Article source: Sechenov University via Eurekalert
Image credit: Melburnian / Wikimedia
A research team has successfully quantified and visualised the impact of Hong Kong air pollution especially ozone pollutant on plants and the environment. Although the experiment took place in a rural area and in Spring, which would usually have a lower average ozone concentration, the pollutant level still reached high enough to do significant damage.
Staying on top of these collections is time-consuming during the best of times, and this task becomes even more complex in the age of social distancing. Yet thousands of scientists across the globe are doing just that, maintaining everything from crickets, to tissue cultures, mice, powdery mildews, nematodes, psyllids, zebrafish and even rust fungi.
Glyphosate is a widely used broad-spectrum herbicide that targets both broadleaf plants and grasses (dicots and monocots). This recent work aids our understanding of adaptive evolution in amaranth plants and has implications for optimizing pesticide use in the environment.
We are living through an explosion in the availability of microbiome data. In agricultural systems, the proliferation of research on plant and soil microbiomes has been coupled with excitement for the potential that microbiome data may have for the development of novel, sustainable, and effective crop management strategies. However, while this is an exciting development, as the collective body of microbiome data for diverse crops grows, the lack of consistency in recording data makes it harder for the data to be utilized across research projects.
Exciting news! The Global Plant Council is partnering for a second time with the journal Plant, People, Planet. Together we are launching an online video contest that will give participants the possibility to win an price.
Few technologies have made as big a splash in recent years as CRISPR/Cas9, and rightfully so. CRISPR/Cas9, or clustered regularly interspaced palindromic repeats (CRISPR) and associated genes, is a bacterial gene editing toolbox that allows researchers to edit genomic sequences much more precisely and efficiently than previously possible, opening up doors to new ways of doing research. As with many new biotechnologies, the application of CRISPR in biology began with genetic model organisms such as Arabidopsis thaliana. In recent research authors review the prospects for expanding the use of CRISPR for research beyond genetic model plant species.
Plants can’t self-isolate during a disease outbreak, but they can get help from a friend — beneficial soil microbes help plants ward off a wide range of diseases. Now, scientists have uncovered a major part of the process in which beneficial fungi help corn plants defend against pathogens.