
With their expertise in microbiome research, researchers were able to demonstrate how a specific bacterium inside the seeds of rice plants effectively and in an eco-friendly way inhibits destructive plant pathogens.
With their expertise in microbiome research, researchers were able to demonstrate how a specific bacterium inside the seeds of rice plants effectively and in an eco-friendly way inhibits destructive plant pathogens.
Most legume species have compound leaves with multiple joined units termed leaflets, and the geometry of leaflets (the spatial structure and organization of leaflets) largely determines the compound leaf shape, which has been broadly recognized in model compound-leafed species.
Little is known about the vascular cells in leaves, in particular the phloem parenchyma. Two teams of plant researchers and bioinformatics researchers have succeeded for the first time in identifying the functions of the different cell types in the leaf vasculature of plants.
The sensory quality of watermelon fruit is determined by the content of sugar and organic acid, which determines the taste of watermelon during the development and maturation of watermelon fruit. The changes of sugar and organic acid during the watermelon fruit development were analyzed and the key gene networks controlling the metabolism of sugar and organic acid during the fruit development were identified.
Nitrogen is one the most essential nutrients for plants. Its availability in the soil plays a major role in plant growth and development, thereby affecting agricultural productivity. Scientists were now able to show, how plants adjust their root growth to varying sources of nitrogen. In a new study they give insights in the molecular pathways of roots adaptation.
Plants have the same variation in body clocks as that found in humans, according to new research that explores the genes governing circadian rhythms in plants.
Some 9,000 years ago, corn as it is known today did not exist. Ancient peoples in southwestern Mexico encountered a wild grass called teosinte that offered ears smaller than a pinky finger with just a handful of stony kernels. But by stroke of genius or necessity, these Indigenous cultivators saw potential in the grain, adding it to their diets and putting it on a path to become a domesticated crop that now feeds billions.
Bright red, tasty and healthy, that’s how we know and love bell peppers. A research team has deciphered in detail at the protein level what makes them turn red as they ripen. At the heart of the project are the so-called plastids, typical plant cell organelles in which chlorophyll is broken down and carotenoids are produced as the fruit ripens. Visually, this transformation is clearly visible in the colour change from green to orange or red.
The genetic material of plants, animals and humans is well protected in the nucleus of each cell and stores all the information that forms an organism. In addition, cells contain small organelles that contain their own genetic material. These include chloroplasts in plants. But is the genetic material actually permanently stored within one cell?
Scientists are getting closer to finding the genes for maleness in waterhemp and Palmer amaranth, two of the most troublesome agricultural weeds in the U.S. Finding the genes could enable new “genetic control” methods for the weeds, which, in many places, no longer respond to herbicides.