You might have observed plants competing for sunlight — the way they stretch upwards and outwards to block each other’s access to the sun’s rays — but out of sight, another type of competition is happening underground. In the same way that you might change the way you forage for free snacks in the break room when your colleagues are present, plants change their use of underground resources when they’re planted alongside other plants.
Historically credited as being the first bacterium ever characterized as a plant pathogen, fire blight is a bacterial disease that leads to significant losses of pear and apple. The role of insects in the spread of this disease has been long studied. In a new study, plant pathologists take a hypothesis that has been more or less ignored for 100 years and provided support for its validity.
Researchers at Leipzig University (UL) and the German Centre for Integrative Biodiversity Research (iDiv) have compiled the world’s most comprehensive list of known plant species. It contains 1,315,562 names of vascular plants, thus extending the number of recognised plant species and subspecies by some 70,000 – equivalent to about 20%. The researchers have also succeeded in clarifying 181,000 hitherto unclear species names. The data set has now been published in Scientific Data. This marks the culmination of more than ten years of intensive research work and could help to make Leipzig a leading international centre of plant biodiversity research.
Leipzig could mean for the future of plant taxonomy what Greenwich meant for world time until 1972: it could become the reference city for correct scientific plant names. In an outstanding feat of research, the curator of the Botanical Garden of Leipzig University, Dr Martin Freiberg, and colleagues from iDiv and UL have compiled what is now the largest and most complete list of scientific names of all known plant species in the world. The Leipzig Catalogue of Vascular Plants (LCVP) enormously updates and expands existing knowledge on the naming of plant species, and could replace The Plant List (TPL) – a catalogue created by the Royal Botanic Gardens, Kew in London which until now has been the most important reference source for plant researchers.
“In my daily work at the Botanical Garden, I regularly come across species names that are not clear, where existing reference lists have gaps,” said Freiberg. “This always means additional research, which keeps you from doing your actual work and above all limits the reliability of research findings. I wanted to eliminate this obstacle as well as possible.”
World’s most comprehensive and reliable catalogue of plant names
With 1,315,562 scientific names, the LCVP is the largest of its kind in the world describing vascular plants. Freiberg compiled information from accessible relevant databases, harmonized it and standardised the names listed according to the best possible criteria. On the basis of 4500 other studies, he investigated further discrepancies such as different spellings and synonyms. He also added thousands of new species to the existing lists – species identified in recent years, mainly thanks to rapid advances in molecular genetic analysis techniques.
The LCVP now comprises 351,180 vascular plant species and 6160 natural hybrids across 13,460 genera, 564 families and 84 orders. It also lists all synonyms and provides further taxonomic details. This means that it contains over 70,000 more species and subspecies than the most important reference work to date, TPL. The latter has not been updated since 2013, making it an increasingly outdated tool for use in research, according to Freiberg.
“The catalogue will help considerably in ensuring that researchers all over the world refer to the same species when they use a name,” says Freiberg. Originally, he had intended his data set for internal use in Leipzig. “But then many colleagues from other botanical gardens in Germany urged me to make the work available to everyone.”
LCVP vastly expands global knowledge of plant diversity
“Almost every field in plant research depends on reliably naming species,” says Dr Marten Winter of iDiv, adding: “Modern science often means combining data sets from different sources. We need to know exactly which species people refer to, so as not to compare apples and oranges or to erroneously lump different species.” Using the LCVP as a reference will now offer researchers a much higher degree of certainty and reduce confusion. And this will also increase the reliability of research results, adds Winter.
“Working alone, Martin Freiberg has achieved something truly incredible here,” says the director of the Botanical Garden and co-author Prof Christian Wirth (UL, iDiv). “This work has been a mammoth task, and with the LCVP he has rendered an invaluable service to plant research worldwide. I am also pleased that our colleagues from iDiv, with their expertise in biodiversity informatics, were able to make a significant contribution to this work.”
Read the paper: Scientific Data
Article source: German Centre for Integrative Biodiversity Research (iDiv)
Image credit: Leipzig is host to the oldest botanical garden in Germany. On an area of only three hectares, around 6500 of the 350,000 plant species worldwide grow here. Credit: Swen Reichhold
Researchers have gain deeper knowledge of plant growth by treating seedlings with painkillers like Aspirin and the like. For centuries humans were using willow barks to treat a headache or an inflamed tooth. Later, the active ingredient, the plant hormone salicylic acid, was used to develop painkillers like Aspirin. But what happens, if plants are treated with these painkillers? By doing so, scientists discovered an unexpected bioactivity of human pharmaceuticals in plants.
Anthraquinones are a class of naturally occurring compounds prized for their medicinal properties, as well as for other applications, including ecologically friendly dyes. Despite wide interest, the mechanism by which plants produce them has remained shrouded in mystery until now.
Global warming already affects Siberian primrose, a plant species that is threatened in Finland and Norway. According to a recently completed study, individuals of Siberian primrose originating in the Finnish coast on the Bothnian Bay currently fare better in northern Norway than in their home area. The results indicate that the species may not be able to adapt to quickly progressing climate change, which could potentially lead to its extinction.
A plant used in traditional Chinese medicine has evolved to become less visible to humans, new research shows. Scientists found that Fritillaria delavayi plants, which live on rocky slopes of China’s Hengduan mountains, match their backgrounds most closely in areas where they are heavily harvested.
The popularity of tomatoes has led to the development of more than 10,000 cultivars of various sizes, shapes, and hues. Interestingly though, there is little genetic diversity among modern tomato varieties. This lack of diversity, coupled with the fact that many traits are controlled by multiple genes, makes improving plant yield and quality a major challenge for tomato breeders. A research team shows that modern gene editing techniques can help tomato breeders introduce diversity and improve the nutrition and environmental impact of tomato crops.
Researchers call for a coalition of biotech industry, government and non-government organizations, trade organizations, and academic experts to work together to provide basic information about gene-edited crops to lift the veil on how plants or plant products are modified and provide greater transparency on the presence and use of gene editing in food supplies.
Climate change is a major global crisis. Despite international agreements to fight climate change, greenhouse gas emissions continue to increase and global temperatures continue to rise. The potential effects on our lives are drastic: recent wildfires in the US and Australia, floods due to heavier precipitation, and heavy losses of crops are all indicative of this. But simply reducing the production of greenhouse gases, although crucial, is not enough. The CO2that we’ve released, and are continuing to release into the atmosphere, remains there indefinitely. Climate change will thus continue to worsen unless atmospheric carbon is removed. Therefore, finding cutting-edge solutions for the active removal of greenhouse gases is crucial.