Tag

food security Archives - Page 5 of 6 - The Global Plant Council

Protecting plants, protecting people

By | Blog, GPC Community
Professor Sophien Kamoun

Professor Sophien Kamoun (The Sainsbury Lab, UK)

This week on the blog, Professor Sophien Kamoun describes his work on plant–pathogen interactions at The Sainsbury Lab, UK, and discusses the future of plant disease.

Could you begin by describing the focus of your research on plant pathogens?

We study several aspects of plant–pathogen interactions, ranging from genome-level analyses to mechanistic investigations focused on individual proteins. Our projects are driven by some of the major questions in the field: how do plant pathogens evolve? How do they adapt and specialize to their hosts? How do plant pathogen effectors co-opt host processes?

One personal aim is to narrow the gap between research on the mechanisms and evolution of these processes. We hope to demonstrate how mechanistic research benefits from a robust phylogenetic framework to test specific hypotheses about how evolution has shaped molecular mechanisms of pathogenicity and immunity.

 

Phytophtora ramorum

Sudden oak death is caused by the oomycete Phytophthora ramorum. Image from Nichols, 2014. PLOS Biology.

Tree diseases such as sudden oak death, ash dieback and olive quick decline syndrome have been making the news a lot recently. Are diseases like these becoming more common, and if so, why?

It’s well documented that the scale and frequency of emerging plant diseases has increased. There are many factors to blame. Increased global trade is one. Climate change is another. There is no question that we need to increase our surveillance and diagnostics efforts. We’re nowhere near having coordinated responses to new disease outbreaks in plant pathology, especially when it comes to deploying the latest genomics methods. We really need to remedy this.

 

The wheat blast fungus recently hit Bangladesh. Could you briefly outline how it is being tackled by plant pathologists?

Wheat blast has just emerged this last February in Bangladesh – its first report in Asia. It could spread to neighboring countries and become a major threat to wheat production in South Asia. Thus, we had to act fast. We used an Open Science approach to mobilize collaborators in Bangladesh and the wider blast fungus community, and managed to identify the pathogen strain in just a few weeks. It turned out that the Bangladeshi outbreak was caused by a clone related to the South American lineage of the pathogen. Now that we know the enemy, we can proceed to put in place an informed response plan. It’s challenging but at least we know the nature of the pathogen – a first step in any response plan to a disease outbreak.

 

Which emerging diseases do you foresee having a large impact on food security in the future?

Obviously, any disease outbreak in the major food crops would be of immediate concern, but we shouldn’t neglect the smaller crops, which are so critical to agriculture in the developing world. This is one of the challenges of plant pathology: how to handle the numerous plants and their many pathogens.

European Corn Borer

European corn boreer. Image from Cornell University. Used under license CC BY 2.0.

As far as new problems, I view insect pests as being a particular challenge. Our basic understanding of insect–plant interactions is not as well developed as it is for microbial pathogens, and research has somewhat neglected the impact of plant immunity. The range of many insect pests is expanding because of climate change, and we are moving to ban many of the widely used insecticides. This is an area of research I would recommend for an early career scientist.

 

What advice would you give to a young researcher in this area?

Ask the right questions and look beyond the current trends. Think big. Be ambitious. Don’t shy away from embracing the latest technologies and methods. It’s important to work on real world systems. Thanks to technological advances, genomics, genome editing etc., the advantages of working on model systems are not as obvious as they were in the past.

 

How can we mitigate the risks to crops from plant diseases in the future?

My general take is to be suspicious of silver bullets. I like to say “Don’t bet against the pathogen”. I believe that for truly sustainable solutions, we need to continuously alter the control methods, for example by regularly releasing new resistant crop varieties. Only then we can keep up with rapidly evolving pathogens. One analogy would be the flu jab, which has a different formulation every year depending on the make-up of the flu virus population.

 

Blight Potato

Potato with blight, caused by the oomycete Phytophthora infestans. Image credit: USDA. Used under license CC BY-ND 2.0.

Is there anything else you’d like to add?

I read that public and private funding of plant science is less than one tenth of biomedical research. Not a great state of affairs when one considers that we will add another two billion people to the planet in the next 30 years. As one of my colleagues once said: “medicine might save you one day; but plants keep you alive everyday”.

 

Underutilized crops and insects replace fishmeal in aquaculture feed

By | Blog, Future Directions, GPC Community

Farmed fish are often fed with fishmeal, produced from the dried tissues of caught marine fish. In 2012, a total of 16.3 million metric tons of fish were caught to produce fishmeal and fish oil, 73% of which was used in aquaculture. This practice is unsustainable, and as the global human population is expected to rise to 9 over billion by 2050, capture fisheries will not be able to satisfy the demand for fish protein.

Barramundi

Barramundi fish

In recent decades there has been extensive research into ingredients to replace fishmeal, but this has focused mainly on sources of plant carbohydrate and protein such as maize and soy, which also serve as human foods. While these crops are now used in some commercial aquaculture feeds, they are not suitable for many species and have had less than optimal results. In addition, many countries do not grow these mainstream crops and are left in the undesirable position of having to import fishmeal alternatives, which can be cost prohibitive, and increase carbon emissions.

An alternative to fishmeal

Insect based feed

Insect based fish feed

The Crops for the Future (CFF) team in Malaysia is working with the University of Nottingham, UK, to investigate insect-based aquaculture feed as a replacement to fishmeal use in fisheries. Both organizations recognize that current rates of wild fish depletion are unsustainable and will not meet future demand for fishmeal under a ‘business as usual’ scenario. With support from the Newton-Ungku Omar Fund Institutional Linkages Programme, they have shown that the quality of insect larvae as an aquafeed ingredient is affected by the substrate on which the insects feed.

The CFF ‘FishPLUS’ program has revealed that black soldier fly (BSF; Hermetia illucens) larvae fed with underutilized crops can be used to produce insectmeal and replace up to 50% of fishmeal in formulated aquaculture. These crops are not used for human food and can be grown on marginal land close to areas of aquaculture production in tropical climates, increasing the sustainability of the process.

Producing insectmeal with underutilized crops

Ground Sesbiana

Ground Sesbania is used to feed the black soldier fly larvae

Over a year, the researchers worked with a private sector supplier to develop laboratory-scale BSF breeding pods in which different substrate combinations of underutilized crops could be trialed. BSF feeding trials were conducted using five separate or combined underutilized crops as substrate, i.e. Sesbania (Sesbania sp.); 90% Sesbania with 10% Moringa (Moringa oleifera); Bambara groundnut (Vigna subterranea) leaf; Bambara groundnut flour; and Moringa leaf.

The best results were obtained by feeding the larvae on Sesbiana, a nitrogen-fixing legume that grows well in marginal tropical landscapes and is not a human food crop. Overall, nutrient analyses indicated that the amino acid profile for insectmeal is encouraging and closely resembles fishmeal.

Successful feeding trials

Black soldier fly larvae

Black soldier fly larvae

Fish feeding trials using the BSF insectmeal were undertaken in Malaysia at the CFF Field Research Centre. The trial fish, barramundi, accepted a formulated feed with up to 50% replacement of fishmeal with Sesbania-fed BSF insectmeal. The feed conversion ratio, mortality rate and biomass growth rate were all comparable to control trials with commercial fishmeal aquaculture feed. Back in the UK, complementary antinutritional studies at the University of Nottingham contributed essential information to guide the development of an optimal aquaculture feed formulation in the future.

Waste not, want not

Amaranth alternative fertilizer

Amaranth growing with either commercial fertilizer (right) or FishPLUS substrate compost (left)

This project also embraces the use of undigested material from the insect feeding as compost for crops like okra and amaranth. For example, 10kg of Sesbania leaves produces 1kg of BSF pre-pupae and 9kg of undigested waste material. When used as a soil conditioner in our agronomy trial, this waste material improve the crop growth at a comparable level to commercial fertilizer. This could be used by terrestrial crop farmers to reduce their fertilizer bill.

The findings of this project are of importance to world food security. As leaders in this field of research, the UK and Malaysian partners are well placed to leverage these preliminary results and explore scalability and options for commercialization of benefit to both economies.


CFF is the world’s first and only organization dedicated to research on underutilized crops. Professor M.S. Swaminathan, World Food Prize Laureate and Father of the Asian Green Revolution, described CFF as `the need of the hour.’

You can see more about the FishPLUS project from Crops for the Future in the video below:



This article was written by FishPLUS Team, for Crops for the Future.

Newton-IUCAP workshop

Newton-IUCAP workshop

University_of_Nottingham CFFlogo

This work is supported by:

Funders links

Plant Artificial Chromosome Technology

By | Blog, Future Directions

Established GM technologies are far from perfect

The first genetically modified (GM) crops were approved for commercial use in 1994, and GM crops are now grown on over 180 million hectares across 29 countries. The most used forms of genetic modification are systems that result in herbicide resistance or expression of the Bt toxin in maize and cotton to provide protection against pests such as the European corn borer. These systems both require few novel genes to be introduced to the plant, and allow more efficient use of herbicides and pesticides, both of which are harmful to the environment and human health. Current systems of genetic modification usually involve

Agrobacterium tumefaciens is used to genetically engineer plants in the lab. In nature this bacteria uses its ability to alter plant DNA to cause tumours.

Agrobacterium tumefaciens is used to genetically engineer plants in the lab. In nature this bacteria uses its ability to alter plant DNA to cause tumours. Image by Jacinta Lluch Valero used under Creative Commons 2.0.

the use of Agrobacterium vectors, direct transformation by DNA uptake into the plant protoplast, or bombardment with gold particles covered in DNA. However, current systems of transformation are far from perfect. Many beneficial traits such as disease resistance require stacking of multiple genes, something that is difficult with current transformation systems. Furthermore, it is essential that transgenes are positioned correctly within the host genome. Current systems of genetic modification can insert genes into the ‘wrong’ place, disrupting function of endogenous genes or having implications for down or upstream processes. An additional problem is that transfer of transgenes from one line to another requires several generations of backcrossing. However, the past two decades have seen great developments in microbiology. Many new tools and resources are now available that could greatly enhance the biotechnology of the future.

 

New technologies

Many new and emerging technologies are now available that could transform plant genetic engineering. For example, high throughput sequencing and the wide availability of bioinformatics tools now make identifying target genes and traits easier than ever. Technologies such as site-specific recombination (SSR) and genome editing allow specific regions of the genome to be precisely targeted in order to add or remove genes. Artificial chromosome technology is also part of this emerging group that could be of benefit to plant science. Synthetic chromosomes have already been used in yeast, and widely studied in mammalian systems due to their potential use in gene therapy. Although there have so far been no definitive examples in plants, work has been done in maize that shows the potential of the technology for use in GM crops.

 

Building an artificial chromosome

A minichromosomes is a small, synthetic chromosome with no genes of its own. It can be programmed to express any desirable DNA sequence that could encode for one, or a number, of genes. An ideal minichromosome would be small and only contain essential elements such as a centromere, telomeres and origin of replication. Once introduced into the plant the minichromosomes should be designed such that interference with host growth and development is minimal. A key requirement is that the chromosome is stable during both meiosis and mitosis. This would ensure introduced genes do not become disrupted or mutated during cell division and reproduction. Gene expression would therefore remain the same for many generations. Finally, the DNA sequence on the minichromosomes could be designed such that it is amenable to SSR or gene editing systems. This would allow re-design and addition of new traits further down the line.

 

Potential advantages of artificial chromosomes

Plant artificial chromosomes (PACs) have many advantages over traditional transformation systems. For example, to confer complex traits such as disease resistance and tolerance to abiotic stresses such as heat and drought, multiple genes are required. This is not easy with current methods of modification.

PACs could offer a new way to introduce beneficial traits to our crops plants and feed a growing population.

PACs could offer a new way to introduce beneficial traits to our crops plants and feed a growing population.Image by Seattle.Romer. Used under Creative Commons 2.0.

However, PACs allow an almost unlimited number of genes to be integrated into the host system. A further possibility that comes from being able to add multiple genes is the addition of new metabolic pathways into the plant. This could allow us to change the nutrients produced by a plant to benefit our diets. Additionally, in a contained environment, plants could be used as a cheap, sustainable way to produce pharmaceuticals. A second major benefit of PACs is that they avoid linkage drag. This is when a desirable gene is closely linked to a deleterious gene that acts to reduce plant fitness. Where this linkage is very tight even repeated backcrossing cannot separate out the genes. Design of new DNA sequences completely avoids this problem, and could allow us to select out detrimental traits from out crop plants.

 

Regulations for novel biotechnology

Emerging technologies pose new questions to policy makers regarding GM regulation. For example, the use of genome editing, whereby specific sites in the genome are targeted and modified, produces an end product with a phenotype almost identical to one that could be achieved through conventional breeding. This sets genome-edited crops apart from other transgene-containing GM material. For this reason many now argue that genome-edited crops ought not to come under current GM regulations. Much of this argument centres on whether or not to regulate the scientific technique used to produce a crop, or to regulate the end product in the field. For more information on genome editing including current regulations and consensus, see the links at the end of this article.

 

PACs pose a different set of problems entirely. Minichromosomes would be foreign bodies in the plant, and gene stacking within these introduces even more foreign genes than is possible with current technologies. This would require extensive assessment of both environmental and health effects prior to commercialization. Currently regulatory approval costs around $1-15 million per insertion into the genome. These heavy charges may discourage the further development of minichromosomes technology. However, with PACs it is possible that a particular package of genes could be assessed once, and then transferred into numerous cultivars. This would eliminate the requirement to individually engineer and test every cultivar, so perhaps saving time and money in the long term.

 

More information on genome editing:

Sense about science genome editing Q & A

The regulatory status of genome-edited crops

The Guardian article on genome editing regulation

A proposed regulatory network for genome edited crops in Nature

A recent workshop on the CRISPR-CAS system of genome editing was held in September 2015 by GARNet and OpenPlant at the John Innes Centre in Norwich, UK. You can read the full meeting report here.

 

 

 

 

 

 

 

 

 

 

 

Integrated Pest Management Systems

By | Blog, Future Directions

Herbivorous pests can devastate crops, with huge economic and social impacts that threaten global food security. In 2011 scientists warned that biological threats, including pests and pathogens, account for a 40% loss in global production and have the potential for even higher losses in the future.

A farmer sprays pesticides on her crop

A farmer sprays pesticides on her crop. From IFPRI – IMAGES. Used under Creative Commons 2.0.

In the 1950s and 1960s huge amounts of pesticides were being used in agriculture, with negative effects on both humans and ecology. Pests and pathogens were developing resistance to pesticides, and to counteract this chemical companies were developing ever stronger, more expensive chemicals.

Perry Adkisson and Ray Smith, both entomologists, noted the harmful effects on the economy and environment of the overuse of synthetic pesticides. Working together they identified practical approaches to pest control that minimized pesticide use. They developed and popularized integrated pest management (IPM) systems, for which they won the World Food prize in 1997.

 

“Integrated Pest Management (IPM) means the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimize risks to human health and the environment. IPM emphasizes the growth of a healthy crop with the least possible disruption to agro-ecosystems and encourages natural pest control mechanisms.” FAO definition

 

What is IPM?

IPM is an approach to crop production that considers the whole ecosystem, integrating a number of management techniques, rather than focusing all resources on a single practice such as pesticide use. Adkisson and Smith identified a number of principals around which successful IPM should be based:

Firstly, crop varieties should be selected that are appropriate to the culture and local environment. This would ensure the crop species is already adapted to local conditions, and may have some defense mechanisms to protect itself from biotic and abiotic stresses.

Secondly, IPM is based around pest control rather than complete eradication. Therefore, maximum tolerable levels of the pest that still enable good crop yields should be identified and the pests should be allowed to survive at this threshold level, although allowing a number of pests to exist within the crop requires continual monitoring. Good knowledge of pest behavior and lifecycle enables the prediction of where more or less controls are required.

Finally, when choosing a method of control, both mechanical methods, such as traps or barriers, or appropriate biological control are preferential. However, pesticides can be integrated into the plan if necessary, providing use is responsible and not in excess of requirements. Some really cool practices are now emerging that can be used as part of an IPM system around the world.

 

Enhancing biological control

Simply reducing pesticide use can actually lead to increased yields, as farmers in Vietnam discovered when scientists convinced them to try it for themselves. Their nemesis, the brown planthopper (Nilaparvata lugens), is increasingly resistant to insecticides, with devastating outbreaks becoming more common. Rice farmers found that by stopping their typical regular insecticide sprays, the planthopper’s natural predators such as frogs, spiders, wasps and dragonflies were able to survive and remove the pests, giving farmers a 10% increase in harvest income. This improved biological control is a key component of IPM.

Brown Planthopper

The Brown Planthopper (Nilaparvata lumens) on a rice stem. From IRRI photos. Used under Creative Commons 2.0.

 

Push-pull technology

Push-pull agriculture has been very successful in Kenya, where stemborer moths can cause vast yield losses in maize with estimated economic impacts of up to US$ 40.8 million per year. Push-pull technology uses selected species as intercrops between the main crops of interest. Intercrops work in two ways, by pushing pests away from the economically valuable crop, and pulling them towards a less valuable intercrop. The stemborer moth push-pull system uses Desmodium (Desmodium uncinatum) to repel stemborer moths. Desmodium species are small flowering plants that produce secondary metabolites that repel insects. Moths are then attracted to the surrounding napier grass instead.

Aside from controlling the stemborer moth, this system has a number of additional benefits. Desmodium suppresses the growth of Striga grass (a devastating weed that you can read about here) via a number of mechanisms, primarily through interfering with root growth. Additionally, the intercrop species can be used for animal fodder and improve soil fertility. The multiple benefits and success of this system has meant push pull has now been adopted by over 80,000 small-holdings in Kenya and is being rolled out to Uganda, Tanzania and Ethiopia.

 

Stem borer larva feeding on a maize stem.

Stem borer larva feeding on a maize stem. From International Institute of Tropical Agriculture. Used under Creative Commons 2.0.

Abrasive weeding

Abrasive weeding is a relatively new technique that involves firing air-propelled grit at a crop to physically kill any weeds growing between crop rows. One issue with this method is that it indiscriminately damages the stem and leaf tissue of both crops and weeds, but grit applicator nozzles are available to more directly target the base of the stem to minimize collateral damage. A recent study found abrasive weed control reduced weed density by up to 80% in tomato and pepper fields, with 33-44% increases in yield.

Maize cob or walnut shells are currently the most frequently used grits, but the technique offers the exciting possibility of combining fertilization and weed control in one step, which could reduce time and cost to the farmer. For example, soybean meal is able to destroy plant tissues when fired from the gun, and has high nitrogen content that is released slowly into the soil over a period of at least three months, making it an ideal source of fertilizer.

 

Creating stress resilient agricultural systems: Video interviews

By | Blog, Scientific Meetings, SEB

The global population is projected to reach 9.6 billion by 2050, and to accommodate this, crop production must increase by 60% in the next 35 years. Furthermore, our global climate is rapidly changing, putting our cropping systems under more strain than ever before. Agriculture will need to adapt to accommodate more extreme weather events and changing conditions that may mean increased instance of drought, heatwaves or flooding. The Global Plant Council Stress Resilience initiative, was created to address these issues.

Back in October the Global Plant Council, in collaboration with the Society for Experimental Biology brought together experts from around the world at a Stress Resilience Forum to identify gaps in current research, and decide how best the plant science community can move forwards in terms of developing more resilient agricultural systems. We interviewed a number of researchers throughout the meeting, asking about their current work and priorities for the future.  Watch the best bits in the video below:

Now That’s What I Call Plant Science 2015

By | Blog, Research, Science communication

With another year nearly over we recently put out a call for nominations for the Most Influential Plant Science Research of 2015. Suggestions flooded in, and we also trawled through our social media feeds to see which stories inspired the most discussion and engagement. It was fantastic to read about so much amazing research from around the world. Below are our top five, selected based on impact for the plant science research community, engagement on social media, and importance for both policy and potential end product/application.

Choosing the most inspiring stories was not an easy job. If you think we’ve missed something, please let us know in the comments below, or via Twitter! In the coming weeks we’ll be posting a 2015 Plant Science Round Up, which will include other exciting research that didn’t quite make the top five, so watch this space!

  1. Sweet potato is a naturally occurring GM crop
Sweet potato contains genes from bacteria making it a naturally occurring GM crop

Sweet potato contains genes from bacteria making it a naturally occurring GM crop. Image from Mike Licht used under creative commons license 2.0

Scientists at the International Potato Center in Lima, Peru, found that 291 varieties of sweet potato actually contain bacterial genes. This technically means that sweet potato is a naturally occurring genetically modified crop! Alongside all the general discussion about GM regulations, particularly in parts of Europe where regulations about growing GM crops have been decentralized from Brussels to individual EU Member States, this story caused much discussion on social media when it was published in March of this year.

It is thought that ancestors of the modern sweet potato were genetically modified by bacteria in the soil some 8000 years ago. Scientists hypothesize that it was this modification that made consumption and domestication of the crop possible. Unlike the potato, sweet potato is not a tuber but a mere root. The bacteria genes are thought to be responsible for root swelling, giving it the fleshy appearance we recognize today.

This story is incredibly important, firstly because sweet potato is the world’s seventh most important food crop, so knowledge of its genetics and development are essential for future food supply. Secondly, Agrobacterium is frequently used by scientists to artificially genetically modify plants. Evidence that this process occurs in nature opens up the conversation about GM, the methods used in this technology, and the safety of these products for human consumption.

Read the original paper in PNAS here.

  1. RNA-guided Cas9 nuclease creates targetable heritable mutations in Barley and Brassica

Our number two on the list also relates to genetic modification, this time focusing on methods. Regardless of whether or not we want to have genetically modified crops in our food supply, GM is a valuable tool used by researchers to advance knowledge of gene function at the genetic and phenotypic level. Therefore, systems of modification that make the process faster, cheaper, and more accurate provide fantastic opportunities for the plant science community to progress its understanding.

The Cas9 system is a method of genome editing that can make precise changes at specific locations in the genome relatively cheaply. This novel system uses small non-coding RNA to direct Cas9 nuclease to the DNA target site. This type of RNA is small and easy to program, providing a flexible and easily accessible system for genome editing.

Barley in the field

Barley in the field. Image by Moldova_field used under creative commons license 2.0

Inheritance of genome modifications using Cas9 has previously been shown in the model plants, Arabidopsis and rice. However, the efficiency of this inheritance, and therefore potential application in crop plants has been questionable.

The breakthrough study published in November by researchers at The Sainsbury Laboratory and John Innes Centre both in Norwich, UK, demonstrated the mutation of two commercial crop plants, Barley and Brassica oleracea, using the Cas9 system and subsequent inheritance mutations.

This is an incredibly exciting development in the plant sciences and opens up many options in the future in terms of genome editing and plant science research.

Read the full paper in Genome Biology here.

  1. Control of Striga growth

Striga is a parasitic plant that mainly affects parts of Africa. It is a major threat to food crops such as rice and corn, leading to yield losses worth over 10 billion US dollars, and affecting over 100 million people.

Striga infects the host crop plant through its roots, depriving them of their nutrients and water. The plant hormone strigolactone, which is released by host plants, is known to induce Striga germination when host plants are nearby.

In a study published in August of this year the Striga receptors for this hormone, and the proteins responsible for striga germination were identified.

Striga plants are known to wither and die if they cannot find a host plant upon germination. Induction of early germination using synthetic hormones could therefore remove Striga populations before crops are planted. This work is vital in terms of regulating Striga populations in areas where they are hugely damaging to crop plants and people’s livelihoods.

Read the full study in Science here.

Striga, a parasitic plant. Also known as Witchweed.

Striga, a parasitic plant. Also known as Witchweed. Image from the International Institute of Tropical Agriculture used under creative commons license 2.0

  1. Resurrection plants genome harvesting

Resurrection plants are a unique group of flora that can survive extreme water shortages for months or even years. There are more than 130 varieties in the world, and many researchers believe that unlocking the genetic codes of drought-tolerant plants could help farmers working in increasingly hot and dry conditions.

During a drought, the plant acts like a seed, becoming so dry that it appears dead. But as soon as the rains come, the shriveled plant bursts ‘back to life’, turning green and robust in just a few hours.

In November, researchers from the Donald Danforth Plant Science Centre in Missouri, US, published the complete draft genome of Oropetium thomaeum, a resurrection grass species.

O. thomaeum is a small C4 grass species found in Africa and India. It is closely related to major food feed and bioenergy crops. Therefore this work represents a significant step in terms of understanding novel drought tolerance mechanisms that could be used in agriculture.

Read the full paper in Nature here.

  1. Supercomputing overcomes major ecological challenge

Currently, one of the greatest challenges for ecologists is to quantify plant diversity and understand how this affects plant survival. For the last 500 years independent research groups around the world have collected this diversity data, which has made organization and collaboration difficult in the past.

Over the last 500 years, independent research groups have collected a wealth of diversity data. The Botanical Information and Ecology Network (BIEN) are collecting and collating these data together for the Americas using high performance computing (HPC) and data resources, via the iPlant Collaborative and the Texas Advanced Computing Center (TACC). This will allow researchers to draw on data right from the earliest plant collections up to the modern day to understand plant diversity.

There are approximately 120,000 plant species in North and South America, but mapping and determining the hotspots of species richness requires computationally intensive geographic range estimates. With supercomputing the BIEN group could generate and store geographic range estimates for plant species in the Americas.

It also gives ecologists the ability to document continental scale patterns of species diversity, which show where any species of plant might be found. These novel maps could prove a fantastic resource for ecologists working on diversity and conservation.

Read more about this story on the TACC website, here.

Taking Care of Wildlings

By | Blog, Future Directions

By Hannes Dempewolf

We at the Global Crop Diversity Trust care about wildlings! No, not the people beyond The Wall, but the wild cousins of our domesticated crops. By collecting, conserving and using wild crop relatives, we hope to be able to adapt agriculture to climate change. This project is funded by the Government of Norway, in partnership with the Millennium Seed Bank at Kew in the UK, and many national and international research institutes around the world.

The first step of this project was to map and analyze the distribution patterns of hundreds of crop wild relatives. Next, we identified global priorities for collecting, and are now providing support to our national partners to collect these wild species and use them in pre-breeding efforts. An example of a crop we have already started pre-breeding is eggplant (aubergine). This crop, important in developing countries, has many wild relatives, which we are using to develop varieties that can better withstand abiotic stresses and variable environments.

More recently we have started a discussion with the crop science community on how best to share our data and information about these species, and genetic resources more generally. This discourse that was at the heart of what has now become the DivSeek Initiative, a Global Plant Council initiative that you can read more about in this GPC blog post by Gurdev Khush.

Why should you care?

Good question. I couldn’t possibly answer it better than Sandy Knapp, one of the Project’s recent reviewers, who speaks in the video below.

One of the great leaders in the field, Jack Harlan, also recognized their immense value: “When the crop you live by is threatened you will turn to any source of relief you can find. In most cases, it is the wild relatives that salvage the situation, and we can point very specifically to several examples in which genes from wild relatives stand between man and starvation or economic ruin.”

Oryza

Wild rice, Oryza officinalis, is being used to adapt commercial rice cultivars to climate change. Photo credit: IRRI photos, used under Creative Commons License 2.0

Crop wild relatives have indeed been used for many decades to improve crops and their value is well recognized by breeders. This is increasingly true also for abiotic stress tolerances, particularly relevant if we care about adapting our agricultural systems to climate change. One such example is the use of a wild rice (Oryza officinalis) to change the flowering time of the rice cultivar Koshihikari (Oryza sativa) to avoid the hottest part of the day.

Share the care

Fostering the community of those who care about crop wild relatives is an important objective of the project. We make sure that all the germplasm collected by partners is accessible to the global community for research and breeding, within the framework of the International Treaty on Plant Genetic Resources for Food and Agriculture (the ‘Plant Treaty’). The project invests into building capacity into collecting: it’s not as simple a process as it may sound. The following shows the training in collection in Uganda:

We also put a heavy emphasis on technology transfer and the development of lasting partnerships in all of the pre-breeding projects we support.

The only way we can safeguard and reap the benefits of the genetic diversity of crop wild relatives over the long term is by supporting a vibrant, committed community.  We hope you agree, and encourage you to get in touch via cropwildrelatives@croptrust.org.

To find out more about the Crop Trust and how you can take action to help conserve crop diversity for food security, please visit our webpage. For more information about the Crop Wild Relatives project, please visit www.cwrdiversity.org.

 

Biofortification

By | Blog, GPC Community

Approaches to biofortification

Biofortification is the improvement of the nutritional value of our crops through both traditional breeding and genetic engineering. Alongside DivSeek and Stress Resilience, biofortification is one of the Global Plant Council’s three main initiatives and will be central to addressing many of the challenges facing world health. However, biofortification doesn’t always involve changing our crops in some way. Often the nutrients we are lacking are present in pre-existing crops. We can biofortify our diets simply by identifying what’s missing and altering our life style accordingly.

Tackling undernourishment

The share

The share (%) of undernourished people per country. From: Max Roser (2015) -‘Hunger and Undernourishment’. Published online at www.OurWorldInData.org

More often that not we intuitively link biofortification with tackling undernourishment in the developing world, and indeed improvements in the diets of deprived communities would be of enormous benefit to global health.

To do this, a key challenge is to increase the nutrient content of staple food crops such as rice in Asia and maize in sub-Saharan Africa. We need to do this in a sustainable and affordable way; ensuring foods are accessible to those who need it. Alongside the fortification of staple crops we need to identify economical crop species that will grow in harsh environments and provide nutrients currently absent from the diet.

Addressing obesity

It is easy to forget that malnutrition is also a problem in developed countries. Worldwide, at least 2.8 million people per year die from obesity-related illnesses, and in 2011 more than 40 million children under the age of five were overweight. Obesity and related health problems such as diabetes, heart disease and certain cancers, place enormous strain on health services, and are partly a function of poor diet lacking in fibre and key phytonutrients. Addressing this is as important as tackling undernourishment, and many of the same principles apply.

Simple lifestyle changes, such as encouraging the consumption of more fruits and vegetables, are clearly a priority. In addition to this dietary change, if we are going to biofortify foods, there should be an emphasis on crops that are already widely consumed.

Purple tomatoes

Professor Cathie Martin

Professor Cathie Martin works at the John Innes Centre researching the link  between diet and health, and how crops could be fortified to improve our diets and global health.

Tomatoes, are one crop plant already eaten widely in the West, commonly found in fast and convenience foods. For this reason they became the focus of the work of Professor Cathie Martin at the John Innes Centre in Norwich, UK. Cathie’s lab has developed a genetically modified tomato that is rich in anthocyanins, making them purple in colour. Anthocyanins are an important dietary component that can have numerous health benefits, including a potentially significant role in the prevention of diseases such as cancer and diabetes. They are the compounds that give some foods, such as blueberries or eggplant, their distinctive blue or purple colouring. Consuming higher quantities could be highly beneficial to health.

“We focused on anthocyanins because of their huge potential health benefits. Pre-clinical studies show that introducing our purple tomatoes into the diet could be an incredibly effective way to protect against diseases such as cancer. Our next steps will be to confirm these findings in human trials,” says Cathie.

However, naturally occurring tomato varieties containing anthocyanins already exist. Wouldn’t it be better to increase consumption of these rather than creating new ones?

“Indeed purple tomatoes do occur naturally. However, these have anthocyanins only in the skin, in quantities too small to make a significant impact on health. Our genetically modified tomatoes have anthocyanins in all tissues,” explains Cathie.

Since developing the purple tomatoes, Cathie, in collaboration with Professor Jonathan Jones, has set up Norfolk Plant Sciences, the UK’s first GM crop company. However, resistance and uncertainty in Europe surrounding GM technology means that progress has been slow.

“The company was founded in 2007 and we are currently working towards the approval of our purple tomato juice in the USA. Producing just the juice rather than the entire fruit means there are no seeds in the final product. This eliminates environmental challenges without compromising health benefits. If the juice proves successful in the USA we may then work towards approval in the UK and Europe.”

It’s not all about Genetic Modification

Of course if we want to make drastic changes to our foods, such as increase anthocyanins in our tomatoes or carotenoids in our rice, GM technology will be a necessity. However, we can go some way to biofortifying our diets without the use of GM.

Golden rice

Golden rice, shown on the left, is a biofortified crop that accumulates high quantities of provitamin A in the grain. This could help tackle Vitamin A Deficiency in developing countries, from which 500,000 children become blind every year, and nine million will die of malnutrition. Photo credit: IRRI photos used under Creative Commons 2.0

Primarily we really need to focus on changing diet and lifestyle. Promoting plants rich in the nutritional components we need is essential, in addition to encouraging traditional diets such as the Mediterranean diet rich in fish, fruits and vegetables. However, changing people’s behavior and relationship with food is a huge challenge. Cathie cites the UK 5-A-Day governmental campaign as an example.

This campaign was aimed at encouraging people to eat five portions of fruit or vegetables a day. At the end of this 25-year campaign only 3% more of the UK population was getting their five a day.”

In addition to dietary change, we could biofortify our crops through traditional breeding. For example, one answer to increasing anthocyanins in the diet could be red wheat. Red wheat is rich in anthocyanins, and furthermore less susceptible to pre-harvest sprouting, which causes large crop losses every year for farmers. However, we have so far resisted selecting for this trait in wheat breeding programs as it is not considered esthetically pleasing. To improve our diets we may need to change our expectations of what we want our plates to look like.

Next steps

Plant scientists alone cannot tackle biofortification of our diets! Cathie believes the key to a healthier future is interdisciplinary research:

“Everyone needs to come together: nutritionists, epidemiologists, plant breeders, and plant scientists. However, with such a diverse group of people it is hard to reach agreement on the next steps, and equally as difficult to secure funding for research projects. We really need to promote collaboration and interaction between all groups in order to move forwards.”

SCAM ALERT: We have received reports of a scam targeting GPC representatives

X