Plant roots can grow without limit. To do so, they need to balance the production of new cells via cell division and elongation. Plant hormones known as brassinosteroids play a key role in this balancing act. New work unravels how…
Even the mention of lavender evokes the distinct fragrance of the flower. This beautiful flower has been used to make perfumes and essential oils since time immemorial. The aesthetics of the flower have captured the imagination of hundreds, worldwide. So,…
Plant diseases don’t stop at national borders and miles of oceans don’t prevent their spread, either. That’s why plant disease surveillance, improved detection systems, and global predictive disease modeling are necessary to mitigate future disease outbreaks and protect the global…
Due to their complexity and microscopic scale, plant-microbe interactions can be quite elusive. Each researcher focuses on a piece of the interaction, and it is hard to find all the pieces let alone assemble them into a comprehensive map to…
In plants, disease resistance proteins serve as major immune receptors that sense pathogens and pests and trigger robust defense responses. Scientists previously found that one such disease resistance protein, ZAR1, is transformed into a highly ordered protein complex called a…
The most comprehensive study of the family tree for legumes, the plant family that includes beans, soybeans, peanuts, and many other economically important crop plants, reveals a history of whole-genome duplications. The study also helps to uncover the evolution of…
Researchers have shown that pea plants are able to make smart investment decisions when it comes to interactions with their symbiotic bacterial partners. Better understanding of how plants manage these interactions could help with the move towards sustainable agriculture.
A length of steel pipe and a heart monitor are the unlikely tools underpinning new research which suggests that trees may work together to form resource-sharing networks, helping the group collectively overcome environmental challenges.
A grass commonly used to fight soil erosion has been genetically modified to successfully remove toxic chemicals left in the ground from munitions that are dangerous to human health, new research shows.
Leguminous plants, like peas, beans, and various species of clover, obtain the organic nitrogen they need for their growth from symbiotic soil bacteria via specialized structures in their roots. Now researchers explain an evolutionary step in the symbiosis between plants…