You often hear “scientists just need to communicate better”. But communication is a two-way street. You can talk all you like but if no one is listening, then it’s not going to get very far.
By Mathew Reynolds, Wheat Physiologist at, CIMMYT
First post of our “Global Collaboration” series
Wheat is the most widely grown crop in the world, currently providing about 20 percent of human calorie consumption. However, demand is predicted to increase by 60 percent within just 30 years, while long-term climate trends threaten to reduce wheat productivity, especially in less developed countries.
CIMMYT, HeDWIC and IWYP
For over half a century, the International Wheat Improvement Network (IWIN), coordinated by CIMMYT, has been a global leader in breeding and disseminating improved wheat varieties to combat this problem, with a major focus on the constraints of resource poor farmers.
Two complementary networks — the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) — are helping to meet the future demand for wheat consumption through global collaboration and technological partnership.
By harnessing the latest technologies in crop physiology, genetics and breeding, network researchers support the development of new varieties that aim to be more climate resilient, in the case of HeDWIC and with higher yield potential, in the case of IWYP.
Novel approaches
These novel approaches to collaboration take wheat research from the theoretical to the practical and incorporate science into real-life breeding scenarios. Methods such as screening genetic resources for physiological traits related to radiation use efficiency and identifying common genetic bases for heat and drought adaptation are leading to more precise breeding strategies and more data for models of genotype-by-environment interaction that help build new plant types and experimental environments for future climates.
IWYP addresses the challenge of raising the genetic wheat yield potential of wheat by up to 50 percent in the next two decades. Achieving this goal requires a strategic and collaborative approach to enable the best scientific teams from across the globe to work together in an integrated program. TheIWYP model of collaboration fosters linkages between ongoing research platforms to develop a cohesive portfolio of activities that maximizes the probability of impact in farmers’ fields IWYP research uses genomic selection to complement the crossing of complex traits by identifying favorable allele combinations among progeny. The resulting products are delivered to national wheat programs worldwide through the IWIN international nursery system.
Recently, IWYP research achieved genetic gains through the strategic crossing of biomass and harvest index — source and sink — an approach that also validates the feasibility of incorporating exotic germplasm into mainstream breeding efforts.
In the case of HeDWIC, intensified — and possibly new — breeding strategies are needed to improve the yield potential of wheat in hotter and drier environments. This also requires a combined effort, using genetic diversity with physiological and molecular breeding and bioinformatic technologies, along with the adoption of improved agronomic practices by farmers. The approach already has proof of concept in the release and adoption of three heat and drought tolerant lines in Pakistan.
Next
It is imperative to build increased yield and climate-resilience to into future germplasm in order to avoid the risk of climate-related crop failure and to maintain global food security in a warmer climate. Partnerships like HeDWIC and IWYP give hope to meeting this urgent food security challenge.
Further readings:
https://www.hedwic.org/resources.htm
https://royalsocietypublishing.org/doi/full/10.1098/rspb.2012.2190
An economist’s perspective on plant sciences: Under-appreciated, over-regulated and under-funded
Picture: Dr. Felix Fritschi, University of Missouri, while talking with China Agricultural University graduate students
Authors: Shannon K. King1,4, Jon T. Stemmle2, Robert E. Sharp3,4
1Department of Biochemistry, 2School of Journalism, 3Division of Plant Sciences, and 4Interdisciplinary Plant Group, University of Missouri, Columbia, USA
Second post of our “Global Collaboration” series
Earning a graduate degree in the life sciences is all about preparing students to become productive and competitive in today’s scientific field; ensuring they are at the cutting edge of technology and knowledge. However, one aspect of graduate education that is seemingly overlooked is extending outside of the lab and learning how to become a scientist in the global community. This oversight is something that scientists at the University of Missouri and China Agricultural University are working to combat.
In August 2018, faculty, graduate students and post-docs from both universities came together in Beijing for a workshop to discuss scientific areas of expertise ranging from wetland ecology to crop modeling. This allowed attendees to practice collaborating with other scientists internationally and across disciplines.
Joint Scicomm US-China Workshop
One of the key skills the graduate students developed during the workshop was how to communicate science in multiple languages. The students had to overcome the challenges of communicating science in English and Chinese along with explaining it to scientists outside of their disciplines and then take those experiences and turn them into videos, stories and blog posts that the public could enjoy.
Needless to say, the students quickly learned that not only is science communication difficult, but the degree of difficulty rises exponentially when trying to communicate with an audience outside of your native language and discipline. To tackle the language barrier, students avoided jargon and slowed their speaking pace to clearly articulate their points. Many times, the students from the two universities took the breaks between sessions to really talk to each other about the presentation content to solidify what the takeaways were. It was these informal discussions that led to very productive conversations. Students also pointed out the similarities and differences between their projects, allowing for bridges to be built between what would normally be very different fields.
Another part of this workshop helped the students to learn how to better engage with the general public. While in China, the Missouri graduate students performed journalistic tasks in order to demonstrate what they learned and experienced during the workshop. They took video footage, interviewed workshop attendees and conceptualized how to turn all of that content into stories. When the Missouri students returned home, they began the process of creating content about the China trip. They had to make sure all videos, blogs, and articles were easily understandable to a non-science audience since everything would be eventually posted online at https://rootsindrought.missouri.edu/ and on Youtube.
Through this experience, University of Missouri students were able to take what they had learned in theory and put it into practice. These skills will help them to have a unique advantage compared with their peers and help them as they move into their academic and professional careers.
Conclusions
There is no question that the scientific field is becoming more global and the general public is becoming increasingly skeptical of science. This makes it critical that we begin developing graduate programs to incorporate experiences that allow students to engage in the world outside the lab and learn to communicate why their science is beneficial to society, both at home and abroad.
Supported by NSF Plant Genome Program Grant no. 1444448 to R.E.S. and a 111 Program grant to Prof. Shaozhong Kang, China Agricultural University
The 5th international “Fascination of Plants Day” 2019 (FoPD 2019) is set to be celebrated across the world under the umbrella of the European Plant Science Organisation (EPSO) on the 18th of May. As you know, the goal is to get as many people as possible fascinated by plants and enthused about the importance of plant science. We are happy to announce the Global Plant Council is going to join the FoPD2019 fun by launching two separate online activities during the month of May.
“Enhancing Global Collaborations in Crop Science” blog series
On the one hand, every Friday, starting on the 3rd May, Global Plant Council is planning to publish on its blog a post on the series “Enhancing Global Collaborations in Crop Science” as a follow up on the workshop held in Baltimore last November in the frame of the CSSA/ASA Annual Meeting. First post “State of the art research meets breeding for wheat’s future” has been contributed by Mathew Reynolds, Wheat Physiologist at CIMMYT and leader of Heat and Drought Wheat Improvement Consortium (HeDWIC), the most recent addition to GPC team. Stay tuned for more!
#PlantsciART COMPETITION
On the other hand, we have another happy announcement to make. Global Plant Council is partnering with the journal “Plant, People and Planet” and launching an online photo contest on plant science that will give all participants the possibility to win one of the three $150 USD prizes. Do you want to know how? it is quite simple.
HOW TO ENTER THE GPC/PPP ONLINE #PlantSciART COMPETITION?
First, obviously, have a photograph/GIF/video taken around any of the following topics:
- my favorite plant
- plants that will save the world
- plant science in action
Secondly, share your photograph/GIF/video with a catchy plant science caption along with BOTH the hashtags #PlantsciART and #PlantDay and mentioning BOTH the Global Plant Council and “Plants, People, and Planet” journal in Twitter (@GlobalPlantGPC @plantspplplanet) OR Instagram (@globalplantcouncil @plantspplplanet).
The FoPD2019 contest will remain open during the month of May, and winners will be announced mid-June. We are eagerly waiting for your contributions and really looking forward to seeing (and sharing!) your pics.
Finally, the blog is back and at full speed. Yuhuuu!
Modified crops such as Golden Rice could have major benefits for people in developing nations. Image credit: IRRI Licensed under CC BY 2.0
By David Zilberman, Professor and Robinson Chair, Agriculture and Resource Economics, UC Berkeley
When I started working on agronomical issues in the 1970s, the most exciting technologies were related to water, machinery, and harvesting. Plant genetics seemed to be quite a boring enterprise. But as I became familiar with the Green Revolution, I realized the importance of plant research, and that the golden rule in agriculture is to find the optimal mixture between biotic and abiotic technologies. As an economist working on technology, I started to realize that the past fifty years have drastically changed the way plant sciences are done, and the potential and value of their product.
The discovery of the innerworkings of a cell, combined with the power of computers and precision tools, has changed medicine, but it has perhaps the potential to make an even bigger impact on plant sciences and agriculture. I have been working on the economics and policy aspects of agricultural biotechnology (see also Journal of Economic Perspectives). Despite the restrictions on genetically modified varieties, they increase yields and make food more affordable for the poor. They also reduce greenhouse gas emissions and actually improved human health (by reducing exposure to chemicals and aflatoxin). But biotechnologies have had limited impact because of regulations that limit their use mostly to feed and fiber crops, and the practical ban on use of GMOs in Europe and parts of Africa.
It’s clear that developing countries can be the major beneficiaries of these technologies. They can save billions of dollars and address severe health and malnourishment problems. Furthermore, applications of biotechnology on food crops can reduce food security problems and increase access to valuable fresh produce throughout the world. Modern biotechnology can provide tools to accelerate adaptation to climate change, and I am surprised that some of the organizations most aware of climate change don’t recognize the value of biotechnology to address it.
Plant science research has already made major achievements using traditional and advanced tools to provide better varieties and improve the global food situation in a world with a fast growing population. There is a large body of literature documenting the rate of return of research, and much of the achievements have been the development of new varieties. The literature suggests that public research that provided much of the benefit has been underfunded, and its funding is declining. Thus, plant research hasn’t reached its potential.
Thus far, applied research in plant sciences at many universities concentrate on grasses, like corn and wheat, but underemphasize trees and algae. One explanation to the emphasis on grasses is the immediate economic benefits they seem to provide. With all the modern tools of biology, the big challenges and some of the most radical and relevant knowledge can come from the study of trees and algae within the context of forest and oceans. Studies of these specimens will enhance our understanding of living systems, is crucially important from a macro-ecological perspective, and from a practical perspective of finding new materials, new foods and efficient sources of energy.
I believe that society tends to underinvest in plant sciences, both because science is underfunded in general and because of the regulations of biotechnology that limit their use, as mentioned above. The contribution of plant scientists to address problems of climate change, deforestation, food security, and environmental quality are under-emphasized and under-recognized. This leads to less investment in this area, less contribution, and less student interest. But more investment in plant sciences may provide better understanding of their impact and how to regulate them, and provide more promising applications. So we are in a vicious cycle of over-regulation and under-funding that mostly hurt regions and populations that are vulnerable, and reduce our capabilities to deal with global changes.
To move forward, we need to have more enlightened regulations that will allow us to take advantage of this incredible science and big jolts in terms of support for research in plant sciences. Enlightened regulations would balance benefits and risks, reduce the cost of access to modern biotechnologies. They also would allow efficient and mutually beneficial transfer of knowledge and genetic materials across locations. Plant sciences is one discipline where the distribution of efforts across locations globally can be especially beneficial as we can learn about the performance of plant systems throughout the world. Therefore, investments in plant sciences should be distributed globally. For example, a major effort to raise funding for 100 Chairs of Plant Sciences around the world, especially in developing countries, will be a good start. It should be associated with support for student research, as well as forums the exchange of new ideas. And finally, new investments in arboretums and greenhouses.
Plant sciences have been providing humanity essential knowledge that enabled the growth and evolution of human civilization without much fanfare. New tools increase its potential and the excitement and value of research in these areas. Society needs to expand their support to plant sciences to enable it to flourish around the world, as well as enlightened regulation to gain benefits from the fruits of this research.
This blog has been reposted with permission from the MSU-DOE Plant Research Laboratory.
Unlike animals, plants can’t run away when things get bad. That can be the weather changing or a caterpillar starting to slowly munch on a leaf. Instead, they change themselves inside, using a complex system of
hormones, to adapt to challenges.Now, MSU-DOE Plant Research Laboratory scientists are connecting two plant defense systems to how these plants do photosynthesis. The study, conducted in the labs of Christoph Benning and Gregg Howe, is in the journal, The Plant Cell.
At the heart of this connection is the chloroplast, the engine of photosynthesis. It specializes in producing compounds that plants survive with. But plants have evolved ways to use it for other, completely unrelated purposes.
Their trick is to harvest their own chloroplasts’ protective membranes, made of
lipids, the molecules found in fats and oils. Lipids have many uses, from making up cell boundaries, to being part of plant hormones, to storing energy.If plants need lipids for some purpose other than serving as membranes, special proteins break down chloroplast membrane lipids. Then, the resulting products go to where they need to be for further processing.
For example, one such protein, breaks down lipids that end up in plant seed oil. Plant seed oil is both a basic food component and a precursor for biodiesel production.
Now, Kun (Kenny) Wang, a former Benning lab grad student, reports two more such chloroplast proteins with different purposes. Their lipid breakdown products help plants turn on their defense system against living pests and other herbivores. In turn, the proteins, PLIP2 and PLIP3, are themselves activated by another defense system against non-living threats.
Playing the telephone game inside plants
In a nutshell, the plant plays a version of the popular children’s game, Telephone, with itself. In the real game, players form a line. The first person whispers a message into the ear of the next person in the line, and so on, until the last player announces the message to the entire group.
In plants, defense systems and chloroplasts also pass along chemical messages down a line. Breaking it down:
- The plant senses non-living threats, like cold or drought, and indicates it through one hormone (ABA)
- This alarm triggers the two identified proteins to breakdown lipids from the chloroplast membrane
- The lipid products turn into another hormone (JA) which takes part in the insect defense system. Plant growth slows to a crawl. Energy goes to producing defensive chemicals.
“The cross-talk between defense systems has a purpose. For example, there is mounting evidence that plants facing drought are more vulnerable to caterpillar attacks,” Kenny says. “One can imagine plants evolving precautionary strategies for varied conditions. And the cross-talk helps plants form a comprehensive defense strategy.”
Kenny adds, “The chloroplast is amazing. We suspect its membrane lipids spur functions other than defense or oil production. That implies more Telephone games leading to different ends we don’t know yet. We have yet to properly examine that area.”
“Those functions could help us better understand plants and engineer them to be more resistant to complex stresses.”
Moving on to Harvard Medical School
Kenny recently got his PhD from the MSU Department of Biochemistry and Molecular Biology. He has just started a post-doc position in the Farese-Walther lab at Harvard Medical School.
“They look at lipid metabolism in mammals and have started a project connecting it with brain disease in humans,” Kenny says. “There is increasing evidence that problems with lipid metabolism in the brain might lead to dementia, Alzheimer’s, etc.”
“I benefited a lot from my time at MSU. The community is very successful here: the people are nice, and you have support from colleagues and facilities. Although we scientists should sometimes be independent in our work, we also need to interact with our communities. No matter how good you are, there is a limit to your impact as an individual. That is one of the lessons I applied when looking for my post-doc.”
Photo of the author, Kun (Kenny) Wang. By Kenny Wang
Read the original article here.
By Atsuko Kanazawa, Igor Houwat, Cynthia Donovan
This article is reposted with permission from the Michigan State University team. You can find the original post here: MSU-DOE Plant Research Laboratory
Atsuko Kanazawa is a plant scientist in the lab of David Kramer. Her main focus is on understanding the basics of photosynthesis, the process by which plants capture solar energy to generate our planet’s food supply.
This type of research has implications beyond academia, however, and the Kramer lab is using their knowledge, in addition to new technologies developed in their labs, to help farmers improve land management practices.
One component of the lab’s outreach efforts is its participation in the Legume Innovation Lab (LIL) at Michigan State University, a program which contributes to food security and economic growth in developing countries in Sub-Saharan Africa and Latin America.
Atsuko recently joined a contingent that attended a LIL conference in Burkina Faso to discuss legume management with scientists from West Africa, Central America, Haiti, and the US. The experience was an eye opener, to say the least.
To understand some of the challenges faced by farmers in Africa, take a look at this picture, Atsuko says.
“When we look at corn fields in the Midwest, the corn stalks grow uniformly and are usually about the same height,” Atsuko says. “As you can see in this photo from Burkina Faso, their growth is not even.”
“Soil scientists tell us that much farmland in Africa suffers from poor nutrient content. In fact, farmers sometimes rely on finding a spot of good growth where animals have happened to fertilize the soil.”
Even if local farmers understand their problems, they often find that the appropriate solutions are beyond their reach. For example, items like fertilizer and pesticides are very expensive to buy.
That is where USAID’s Feed the Future and LIL step in, bringing economists, educators, nutritionists, and scientists to work with local universities, institutions, and private organizations towards designing best practices that improve farming and nutrition.
Atsuko says, “LIL works with local populations to select the most suitable crops for local conditions, improve soil quality, and manage pests and diseases in financially and environmentally sustainable ways.”
Unearthing sources of protein
At the Burkina Faso conference, the Kramer lab reported how a team of US and Zambian researchers are mapping bean genes and identifying varieties that can sustainably grow in hot and drought conditions.
The team is relying on a new technology platform, called PhotosynQ, which has been designed and developed in the Kramer labs in Michigan.
PhotosynQ includes a hand-held instrument that can measure plant, soil, water, and environmental parameters. The device is relatively inexpensive and easy to use, which solves accessibility issues for communities with weak purchasing power.
The heart of PhotosynQ, however, is its open-source online platform, where users upload collected data so that it can be collaboratively analyzed among a community of 2400+ researchers, educators, and farmers from over 18 countries. The idea is to solve local problems through global collaboration.
Atsuko notes that the Zambia project’s focus on beans is part of the larger context under which USAID and LIL are functioning.
“From what I was told by other scientists, protein availability in diets tends to be a problem in developing countries, and that particularly affects children’s development,” Atsuko says. “Beans are cheaper than meat, and they are a good source of protein. Introducing high quality beans aims to improve nutrition quality.”
Science alone is sometimes not enough
But, as LIL has found, good science and relationships don’t necessarily translate into new crops being embraced by local communities.
Farmers might be reluctant to try a new variety, because they don’t know how well it will perform or if it will cook well or taste good. They also worry that if a new crop is popular, they won’t have ready access to seed quantities that meet demand.
Sometimes, as Atsuko learned at the conference, the issue goes beyond farming or nutrition considerations. In one instance, local West African communities were reluctant to try out a bean variety suggested by LIL and its partners.
The issue was its color.
“One scientist reported that during a recent famine, West African countries imported cowpeas from their neighbors, and those beans had a similar color to the variety LIL was suggesting. So the reluctance was related to a memory from a bad time.”
This particular story does have a happy ending. LIL and the Burkina Faso governmental research agency, INERA, eventually suggested two varieties of cowpeas that were embraced by farmers. Their given names best translate as, “Hope,” and “Money,” perhaps as anticipation of the good life to come.
Another fruitful, perhaps more direct, approach of working with local communities has been supporting women-run cowpea seed and grain farms. These ventures are partnerships between LIL, the national research institute, private institutions, and Burkina Faso’s state and local governments.
Atsuko and other conference attendees visited two of these farms in person. The Women’s Association Yiye in Lago is a particularly impressive success story. Operating since 2009, it now includes 360 associated producing and processing groups, involving 5642 women and 40 men.
“They have been very active,” Atsuko remarks. “You name it: soil management, bean quality management, pest and disease control, and overall economic management, all these have been implemented by this consortium in a methodical fashion.”
“One of the local farm managers told our visiting group that their crop is wonderful, with high yield and good nutrition quality. Children are growing well, and their families can send them to good schools.”
As the numbers indicate, women are the main force behind the success. The reason is that, usually, men don’t do the fieldwork on cowpeas. “But that local farm manager said that now the farm is very successful, men were going to have to work harder and pitch in!”
Back in Michigan, Atsuko is back to the lab bench to continue her photosynthesis research. She still thinks about her Burkina Faso trip, especially how her participation in LIL’s collaborative framework facilitates the work she and her colleagues pursue in West Africa and other parts of the continent.
“We are very lucky to have technologies and knowledge that can be adapted by working with local populations. We ask them to tell us what they need, because they know what the real problems are, and then we jointly try to come up with tailored solutions.”
“It is a successful model, and I feel we are very privileged to be a part of our collaborators’ lives.”
This article is reposted with permission from the Michigan State University team. You can find the original post here: MSU-DOE Plant Research Laboratory
This week we spoke to Dr. Joe Cornelius, the Program Director at the Advanced Research Projects Agency – Energy (ARPA-E). His work focusses on bioenergy production and conversion as a renewable and sustainable energy source, transportation fuel, and chemical feedstock, applying innovations in biotechnology, genomics, metabolic engineering, molecular breeding, computational analytics, remote sensing, and precision robotics to improve biomass energy density, production intensity, and environmental impacts.
What is ARPA-E? How are programs created?
The Advanced Research Projects Agency-Energy (ARPA-E) is a young government agency in the U.S. Department of Energy. The agency is modeled on a successful Defense Department program, the Defense Advanced Research Projects Agency (DARPA). Both agencies target high-risk, high-reward research in early-stage technologies that are not yet ready for private-sector investment.
Program development is one of the unique characteristics of the agency. ARPA-E projects are in the hands of term-limited program directors, who develop a broad portfolio of concepts that could make a large impact in the agency’s three primary mission areas: energy security, energy efficiency, and emissions reductions. The agency motto is “Changing what’s possible”, and we are always asking ourselves, “if it works, will it matter?”. Getting a program approved is a lot like a doing a PhD; you survey the field, host a workshop, determine key points to research, define aggressive performance metrics, and finally defend the idea to the faculty. If the idea passes muster, the agency makes a targeted investment. This flexibility was recently noticed as one of the great aspects of ARPA-E culture and is an exciting part of the job.
What is TERRA and how is it new for agriculture?
TERRA stands for Transportation Energy Resources from Renewable Agriculture, and its impact mission is to accelerate genetic gains in plant breeding. This is an advanced analytics platform for plant breeding. Today, significant scientific progress is possible through the convergence of diverse technologies, and TERRA’s innovation for breeders comes through the integration of remote sensing, computer vision, analytics, and genetics. The teams are using robots to carry cameras to the field and then extracting phenotypes and performing gene linkages. It’s really awesome to see.
This is run by the U.S. Department of Energy. How does TERRA tie into energy?
The United States has a great potential to generate biomass for conversion to cellulosic ethanol, but the crops useful for producing this biomass have not seen the improvement that others, such as soybeans or maize, have had. TERRA is focused on sorghum, which is a productive and resilient crop with existing commercial infrastructure that can yield advanced biomass on marginal lands. In addition, sorghum is a key food and feed crop, and the rest of the world will benefit from these advancements.
How does TERRA address the challenge of phenotyping in the field?
The real challenges that remain are in calibrating the sensor output and generating biological insight. A colleague from the United Kingdom, Tony Pridmore, captured the thought well, saying “Photography is not phenotying.” It’s generally easy to take the pictures — unless it’s very windy, the aerial platforms can pass over any crop, and the ground platforms are based on proven agricultural equipment. To get biological insights however, each team requires an analytics component, and a team from IBM is contributing their analytics expertise in collaboration with Purdue University.
What is most exciting about the TERRA program?
We commissioned the world’s biggest agricultural field robot, which phenotypes year-round. The six teams have successfully built other lightweight platforms involving tractors, rovers, mini-bots, and fixed and rotary wing unmanned aerial vehicles. It’s exciting to see some of the most advanced technologies move so quickly into the hands of great geneticists. The amazing thing is how quickly the teams have started generating phenotyping data. I expected it to take years before we got to this point, but the teams are knocking it out of the park, and we are entering into full-blown breeding systems deployment.
Who’s on the TERRA teams? How did you build the program?
ARPA-E system teams include large businesses, startups, and university groups. The program was built to have a full portfolio of diverse sensor suites, robotic platform types (ground and aerial), analytics approaches, and geographic breadth. Because breeders are working for a particular target population of environments, different phenotypes are valued differently across the various geographies. For that reason, each group is collecting its own set of phenotypes. Beyond that, we’ve worked very hard to encourage collaboration across the teams and have an exciting GxE (genotype x environment) experiment running, where several teams plant the same germplasm across multiple geographies. By combining this with high-throughput phenotyping, the teams are in a good position to determine key environmental inputs to various traits.
Once we achieve rapid-fire field phenotyping, what’s next?
We’re going underground! ARPA-E has made another targeted investment, this time in root phenotyping. We’re really excited about this one. It’s a very similar concept, but the sensing is so much harder. The teams have collaborated with medical, mining, aerospace, and defense communities for technologies that can allow us to observe root and soil systems in the field to allow breeders to improve crops. Ask us again next year—we will have some cool updates to both programs!
Reposted with kind permission from the MSU-DOE Plant Research Laboratory. Original article.
By: Igor Houwat, Atsuko Kanazawa, David Kramer
When engineers want to speed something up, they look for the “pinch points”, the slowest steps in a system, and make them faster.
Say, you want more water to flow through your plumbing. You’d find the narrowest pipe and replace it with a bigger one.
Many labs are attempting this method with photosynthesis, the process that plants and algae use to capture solar energy.
All of our food and most of our fuels have come from photosynthesis. As our population increases, we need more food and fuel, requiring that we improve the efficiency of photosynthesis.
But, Dr. Atsuko Kanazawa and the Kramer Lab are finding that, for biological systems, the “pinch point” method can potentially do more harm than good, because the pinch points are there for a reason! So, how can this be done?
ATP synthase: an amazing biological nanomachine
Atsuko and her colleagues at the MSU-DOE Plant Research Laboratory (PRL) have been working on this problem for over 15 years. They have focused on a tiny machine in the chloroplast called the ATP synthase, a complex of proteins essential to storing solar energy in “high energy molecules” that power life on Earth.
That same ATP molecule and a very similar ATP synthase are both used by animals, including humans, to grow, maintain health, and move.
In plants, the ATP synthase happens to be one of the slowest process in photosynthesis, often limiting the amount of energy plants can store.
Kicking up the gears of plant production
Atsuko thought, if the ATP synthase is such an important pinch point, what happens if it were faster? Would it be better at photosynthesis and give us faster growing plants?
Years ago, she got her hands on a mutant plant, called cfq, from a colleague. “It had an ATP synthase that worked non-stop, without slowing down, which was a curious example to investigate. In fact, under controlled laboratory conditions – very mild and steady light, temperature, and water conditions – this mutant plant grew bigger than its wild cousin.”
But when the researchers grew the plant under the more varied conditions it experiences in real life, it suffered serious damage, nearly dying.
“In nature, light and temperature quality change all the time, whether through the passing hours, or the presence of cloud cover or winds that blow through the leaves,” she says.
Plants slow photosynthesis for a reason!
Atsuko’s research now shows that the slowness of the ATP synthase is not an accident; it’s an important braking mechanism that prevents photosynthesis from producing harmful chemicals, called reactive oxygen species, which can damage or kill the plant.
“It turns out that sunlight can be damaging to plants,” says Dave Kramer, Hannah Distinguished Professor and lead investigator in the Kramer lab.
“When plants cannot use the light energy they are capturing, photosynthesis backs up and toxic chemicals accumulate, potentially destroying parts of the photosynthetic system. It is especially dangerous when light and other conditions, like temperature, change rapidly.”
“We need to figure out how the plant presses on the brakes and tune it so that it responds faster…”
The ATP synthase senses these changes and slows down light capture to prevent damage. In that light, the cfqmutant’s fast ATP is a bad idea for the plant’s well-being.
“It’s as if I promised to make your car run faster by removing the brakes. In fact, it would work, but only for a short while. Then things go very wrong!” Dave says.
“In order to improve photosynthesis, what we need is not to remove the brakes completely, like in cfq, but to control them better,” Dave says. “Specifically, we need to figure out how the plant presses on the brakes and tune it so that it responds faster and more efficiently,” David says.
Atsuko adds: “Scientists are trying different methods to improve photosynthesis. Ultimately, we all want to tackle some long-term problems. Crucially, we need to continue feeding the Earth’s population, which is exploding in size.”
The study is published in the journal, Frontiers in Plant Science.
By
Zoraida Portillo (Perú)
[LIMA] A joint initiative between NASA and the International Potato Centre (CIP), which is based in Peru, offers scientific evidence that it is possible to grow at least four types of potatoes on Mars.
A scenario starring the root crop was portrayed in the movie “The Martian” (2015), in which a lost astronaut, played by Matt Damon, survives on potatoes he cultivates on the red planet while awaiting rescue.
But in addition to this interplanetary possibility, scientists also observed the crop is genetically suited to adapting to the changes creating more adverse environmental conditions on Earth.
So before turning fiction into reality, the tuber has a mission on Earth.
The hardy potato quartet
The study has identified four types of potatoes, out of 65 examined, which have shown resistance to high salinity conditions and were able to form tubers in a type of soil similar to that on Mars.
One of these is the Tacna variety, developed in Peru in 1993. It was introduced to China shortly afterwards, where it showed high tolerance to droughts and saline soils with hardly any need for irrigation.
This variety became so popular in China that it was ‘adopted’ in 2006 under the name of Jizhangshu 8. The same high tolerance was seen on the saline and arid soils of Uzbekistan, a country with high temperatures and water shortages, where the variety was also introduced and renamed as Pskom.
The second variety that passed the salinity test is being cultivated in coastal areas of Bangladesh that have high salinity soils and high temperatures. The other two types are promising clones — potatoes that are being tested for attributes that would make them candidates for becoming new varieties.
These four potato types were created as a result of the CIP’s breeding programme to encourage adaptation to conditions in subtropical lowlands, such as extreme temperatures, which are expected to be strongly affected by climate change.
Down to Earth
In addition to these four potato ‘finalists’, other clones and varieties have shown promising results when tested in severe environmental conditions. The findings offer researchers new clues about the genetic traits that can help tubers cope with severe weather scenarios on Earth.
“It was a pleasant surprise to see that the potatoes that we have improved to tolerate adverse conditions were able to produce tubers on this soil [soil similar to that on Mars],” says Walter Amorós, CIP potato breeder and one of the five researchers involved in the project, who has studied potatoes for more than 30 years.
According to Alberto García, adviser to the UN Food and Agriculture Organization in Peru who is in charge of food security programmes, this experiment “serves to verify that potato, a produce of great nutritional value, is a crop extremely adaptable to the worst conditions”, something that is very relevant for current climate scenarios.
García stresses that global temperatures are now rising at a rate higher than expected, affecting not only potatoes but also other crops. Many now need to be cultivated at higher altitudes — which, he says, is not always a disadvantage and may even be beneficial for crops that were previously cultivated in valleys.
“But it can also have negative consequences that we have to anticipate,” adds García. Therefore, he says this experiment can inspire others to think about future scenarios and look for other crops than can adapt to extreme conditions that will have an impact on agriculture.
Similar to Mars
The project began with a search for soils similar to that found on Mars. Julio Valdivia-Silva, a Peruvian researcher who worked at NASA’s Ames Research Center, eventually concluded that the soil samples collected in the Pampas de la Joya region of southern Peru were the most similar to Martian soil.
Arid, sterile and formed by volcanic rocks, these soil samples were extremely saline.
Helped by engineers from the University of Engineering and Technology (UTEC) in Lima and based on designs by NASA’s Ames Research Center, the CIP built CubeSat — a miniature satellite that recreates, in a confined environment, a Martian-like atmosphere. This is where the potatoes were cultivated.
“If potatoes could tolerate the extreme conditions to which we exposed them in our CubeSat, they have a good opportunity to develop on Mars,” says Valdivia-Silva.
They then conducted several rounds of experiments to find out which varieties could better withstand the extreme conditions, and what minimum conditions each crop needed to survive.
CubeSat, hermetically sealed, housed a container with La Joya soil, where each one of the tubers was cultivated. CubeSat itself supplied water and nutrients, controlled the temperature according to that expected at different times on Mars, and also regulated the planet’s pressure, oxygen and carbon dioxide levels.
Cameras were installed to record the process, broadcasting developments on the soil and making it possible to see the precise moment in which potatoes sprouted.
Based on the results, CIP scientists say that in order to grow potatoes on Mars, space missions will have to prepare the soil so it has a loose structure and contains nutrients that allow the tubers to obtain enough oxygen and water.
In a next phase of the project, the scientists hope to expose successful varieties to more extreme environmental conditions. This requires, among other things, developing a prototype satellite similar to CubeSat that can replicate more extreme conditions with greater precision, at a price tag of US$ 100,000.
This piece was produced by SciDev.Net’s Latin America and Caribbean desk.
This article was originally published on SciDev.Net. Read the original article.