Tag

plant science Archives - Page 4 of 91 - The Global Plant Council

Image credit: Harmony Cheung, University of Plymouth

Combined effects of plastic pollution and seawater flooding amplify threats to coastal plant species

By | Plant Science, Research

A study highlights how a combination of environmental stressors can increase the threats faced by plants in some of the planet’s critical ecosystems.

Two of the planet’s more pressing environmental stressors have the potential to alter the growth and reproductive output of plants found right along the world’s coastlines, a new study suggests.

The research, published in the journal Environmental Pollution, is one of the first to examine the combined effects of seawater flooding and microplastic pollution on coastal plants.

It showed that both stressors had some effects on the species tested, with microplastics impacting the plants’ reproduction while flooding caused greater tissue death.

However, being exposed to both microplastics and flooding together – a threat likely to increase as a result of climate change and plastic use – had a more pronounced impact on their resource allocation.

This in turn led to the plants exhibiting altered growth and experiencing a short-term suppression in their photosynthetic efficiency, responses affect the plants’ ability to capture water, nutrients and sunlight, and contribute to ecosystem wellbeing.

The study was led by experts in plastic pollution and plant biology from the University of Plymouth’s School of Biological and Marine Sciences and International Marine Litter Research Unit.

They say it signposts the potential for microplastics to present an elevated risk when in combination with additional stressors like seawater flooding and that, as a result, establishing the threats presented by multiple co-occurring stressors on ecosystem resilience is a priority.

This research highlights the potential for microplastics, composed of conventional and biodegradable plastic, to detrimentally affect plant functioning. Moreso, it indicates that the effect of microplastics can be magnified by other environmental factors such as rising sea levels and coastal flooding. Studies such as this help us appreciate the potential harm posed by microplastics to a range of organisms, and ecosystem resilience generally.

Dr Winnie Courtene-Jones
Post-Doctoral Research Fellow

The study was carried out as part of BIO-PLASTIC-RISK, a £2.6million project led by the University and supported by the Natural Environment Research Council. It focused on buck’s horn plantain (Plantago coronopus), a low-growing perennial native to Europe, Asia and North Africa – but also found in the United States, Australia, and New Zealand – which commonly grows in sand dune and beach shingle coastal habitats.

Plants were grown in soil containing conventional or biodegradable plastics for 35 days before being flooded with seawater for 72 hours, replicating the kinds of flooding event increasingly associated with storms and coastal storm surges. They were then grown for a further 24 days with scientists monitoring plant survival in addition to factors such as plant size, photosynthetic efficiency and flower production.

On a global scale, habitats such as coastal dunes and grasslands help protect communities in the form of coastal defences and wind protection. They also play a critical role in supporting biodiversity, but are coming under increasing threat from climate change and a number of other environmental factors. This study emphasises that we should not be looking at those threats in isolation as, put together, their impacts can be more pronounced. That is particularly worrying given that both microplastic pollution and coastal flooding are projected to worsen and intensify over the coming decades unless ambitious global actions are implemented.

Mick Hanley
Associate Professor in Plant-Animal Interactions

Read the paper: Environmental Pollution

Article source: University of Plymouth

Author: Alan Williams

Image credit: Harmony Cheung, University of Plymouth

Image: tomato plant. credit: 1195798 / Pixabay

How Not to Lose Tomatoes as We Dry Out Our Planet?

By | Agriculture, Blog, Climate change, Fruits and Vegetables

Scientists have developed drought and salt-resistant tomato plants by discovering a new stress-response mechanism. By engineering these plants to produce a synthetic molecule that activates this mechanism, they enhance the plants’ resilience. This breakthrough could ensure stable tomato production despite adverse climate conditions, supporting global food security.

Read More
Image: Plant defense priming in response to herbivory. Primer stimuli are environmental cues (e.g. volatile organic compounds from damaged neighboring plants, direct herbivore damage, spectral and chemical information) that elicit plant endogenous signaling and so ready plants for faster and stronger responses when additional attacks by herbivores occur (trigger stimulus). Intensity of the priming stimulus and the plant’s inherit sensitivity determine how strongly the plant is responding to a stimulus, reaching from alterations in endogenous signaling that may not significantly affect metabolism to a direct induction of defense metabolism. If the endogenous signal intensity elicit by environmental stimuli ranges within a critical signal intensity, a subsequent trigger stimulus (e.g. direct damage by a herbivore) will result in a faster and stronger expression of the plant defense metabolism. The reliability of a priming stimulus as a predictor of subsequent fitness-affecting damage will affect endogenous signal intensity and retention and thus if the priming information is stored in short- (e.g. transient, transcript and phytohormone accumulation) or long-term memory (e.g. epigenetic alterations). Defense priming allows the integration of environmental information to optimize plant responses while minimizing the costs associated with unreliable (false) environmental information. Credit: Plant Signaling & Behavior

Are plants intelligent? It depends on the definition

By | News, Plant Science

Goldenrod plants exhibit adaptive responses to environmental cues, such as perceiving nearby plants through far-red light and changing behavior when attacked by herbivores. This ability to solve problems and adjust based on environmental information is argued to fit a very basic definition of intelligence, challenging traditional views on plant cognition.

Read More