Category

Research

Synthetic biology in chloroplasts

By | Blog, Research
Dr Anil Day, University of Manchester

Dr Anil Day, University of Manchester

This week we spoke to Dr. Anil Day, a synthetic biologist at the University of Manchester who has developed an impressive array of tools and techniques to transform chloroplast genomes.

 

Could you begin by giving our readers a brief overview of synthetic biology?

Synthetic biology involves the application of engineering principles to biological systems. One approach to understanding a biological system is to break it down into smaller parts, which can be used to design new properties. These redesigned pieces can be reassembled into a new system, tested experimentally, and refined in an iterative process. Synthetic biology projects that are underway in our lab include designing plastids such as chloroplasts with new metabolic functions, and in the longer term the design and assembly of synthetic chloroplast genomes.

 

Anil Day examines transformed plants

Dr. Anil Day examines a cabinet of transformed plants. Credit: Dr. Anil Day.

Why do you use chloroplasts for synthetic biology systems?

Chloroplasts have a relatively small genome, coding for about 100 genes. Importantly, exogenous (foreign) genes coding for new functions can be precisely introduced into the chloroplast genome. All of the plastids within a plant contain the same genome so, once established, the user-designed reprogrammed plastids will be present throughout the plant. Chloroplasts can also produce very high levels of protein; researchers have achieved expression levels where over 70% of the total soluble protein in the leaves is the engineered protein. Expression in tomato fruit is also possible.

Multiple genes can be introduced into chloroplasts and expressed coordinately, allowing the metabolic engineering of more complex processes. The upper size limit for insertions is not known but is likely to be above the 50,000 nucleotide insertion achieved to date. Furthermore, chloroplasts and other plastids are important metabolic hubs and contain a wide variety of chemical substrates useful for metabolic engineering.

Plastids in plants

Plants have several types of plastids, including green photosynthetic chloroplasts, pigment-containing chromoplasts, and starch-containing amyloplasts. Credit: Dr. Anil Day.

 

Could you describe the current state of our ability to engineer chloroplasts?

Chloroplast engineering is routine in many labs around the globe. Although there are multiple chloroplasts in every cell, the process of converting all the chloroplasts to a single population of engineered genomes is not an issue. Most researchers use the tobacco plant because it is easily transformed, but other crops are amenable to transformation, including oilseed rape, soybean, tomato, and potato (cereals such as rice and wheat are more problematic). There has been progress with developing the inducible expression of exogenous genes in chloroplasts too.

 

What challenges/differences do you face when transforming chloroplast genomes when compared to the nuclear genome?

Typical genetic modification of the DNA in the nucleus is performed by introducing exogenous genes in T-DNA. T-DNA is transferred to the plant using the bacterium Agrobacterium tumefaciens, which is an efficient process, but the T-DNA integrates ‘randomly’ at many sites within chromosomes and different lines can have variable expression levels due to positional effects and gene silencing.

A. tumefaciens-mediated gene delivery systems do not work for chloroplast transformation. Most chloroplast transformation labs introduce genes into plastids by blasting cells with gold or tungsten particles coated with DNA. Because chloroplast genomes are present in multiple copies per cell, the process of converting all resident chloroplasts to the transgenic genome requires a continued period of selection. This means that the isolation of chloroplast transformants can take slightly longer than nuclear transformation. In our lab, we speed up this process by using restoration of photosynthesis to select chloroplasts with exogenous genes. Once plants with a uniform population of transgenic plastid genomes have been isolated, the transgenes are stable and inherited through the maternal line.

For the novice, I would say nuclear transformation using A. tumefaciens is easier to accomplish than chloroplast transformation.

 

Edited chloroplasts

A tobacco plant containing leaf areas with edited (pale green) and normal (darker green) chloroplasts. Credit: Dr. Anil Day.

Last year you reported that chloroplasts degrade in mature sperm cells just prior to fertilization. Could you elaborate on how this might be utilized in future crop breeding?

Chloroplasts are inherited from the female parent in wheat. This is useful because it restricts the pollen-mediated spread of chloroplast-localized transgenes into the environment. Previously, no-one had studied the mechanism of maternal chloroplast inheritance in wheat using modern cell biology tools. With our collaborators Lucia PrimavesiHuixia Wu, and Huw Jones at Rothamsted Research, we developed an efficient method to observe small non-green plastids in wheat pollen in real time. We found that the plastids were destroyed during the maturation of sperm cells, which explained the absence of paternal plastids in the offspring.

This discovery has applications in crop breeding. Anther culture is a powerful technique where new homozygous plants can be produced by doubling the chromosome numbers of haploid plants regenerated from pollen. This technique has been challenging in cereals, as chloroplast degradation in pollen leads to a high percentage of albino plants (in some cases 100% albinos). Understanding how to prevent the destruction of plastids in pollen sperm cells will improve this technique in cereals, which could speed up crop breeding in the future.

 

Selection of transformed plants

Transformed plantlets are selected by their ability to survive on a herbicide-containing agar plate, and can then be grown up into mature plants. Credit: Dr. Anil Day.

 What sorts of processes have you successfully transformed into chloroplasts, and what kinds of results have you achieved?

We have expressed a variety of exogenous genes in chloroplasts, from those conferring resistance to herbicides to vaccine epitopes and pharmaceutical proteins:

  • Plants expressing the bar gene in chloroplasts were resistant to the herbicide glufosinate (also known as phosphinothricin).
  • A chloroplast-expressed viral epitope was used to identify samples of human blood infected with the hepatitis C virus.
  • Human transforming growth factor 3 (hTGFβ3), a potential wound healing drug, accumulated to high concentrations in chloroplasts, and could be processed to a pure active form resembling clinical grade hTGFβ3.
  • In collaboration with Ray Dixon, Cheng Qi, and Mandy Dowson-Day at the John Innes Centre, we investigated the feasibility of introducing nitrogen-fixing genes into chloroplasts. This work was initiated in a unicellular green alga with the bacterial nifH gene.

 

What is the cutting edge of chloroplast transformation research?

Chloroplast genes are important for plant growth and development but they are difficult to improve by conventional breeding methods. We recently developed a method to edit plastid genomes, which allows beneficial single point mutations to be introduced into chloroplast genes. This is important because the resulting plants have an identical genome to the original cultivar apart the single base substitution, potentially leading to a new class of biotech crop.

Lentils under the lens: Improving genetic diversity for sustainable food security

By | Blog, Research

This week’s post comes to us from Crystal Chan, project manager of the Application of Genomic Innovation in the Lentil Economy project led by Dr. Kirstin Bett at the Department of Plant Sciences, University of Saskatchewan.

 

Could you begin with a brief introduction to your research?

Our research focuses on the smart use of diverse genetic materials and wild relatives in the lentil (Lens culinaris) breeding program.

Canada has become the world’s largest producer and exporter of lentils in recent years. Lentils are an introduced species to the northern hemisphere and, until recently, our breeding program at the University of Saskatchewan involved just a handful of germplasms adapted to our climatic condition. With dedicated breeding efforts we have achieved noteworthy genetic gains in the past decade, but we are missing out on the vast genetic diversity available within the Lens genus. This is a major dilemma faced by all plant breeders: do we want consistency (sacrificing genetic diversity and reducing genetic gains over time) or diversity (sacrificing some important fixed traits and spending lots of time and resources in “backcrossing/rescue efforts”)?

 

In our current research, we use genomic tools to understand the genetic variability found in different lentil genotypes and the basis of what makes lentils grow well in different global environments (North America vs. Mediterranean countries vs. South Asian countries). We will then develop molecular breeding tools that breeders can use to improve the diversity and productivity of Canadian lentils while maintaining their adaptation to the northern temperate climate.

 

What first led you to this research topic?

Dr. Albert (Bert) Vandenberg, professor and lentil breeder at the University of Saskatchewan, noticed one of the wild lentil species was resistant to several diseases that devastate the cultivated lentil. After years of dedicated breeding effort, he was able to transfer the resistance traits to the cultivated lentil, but it took a lot of time and resources. We began looking into other beneficial traits and became fascinated with the domestication and adaptation aspects of lentil – after all lentil is one of the oldest cultivated crops, domesticated by man around 11,000 BC! With the rapid advance in genomic technology, we can start to better understand the biology and develop tools to harness these valuable genetic resources.

 

You have been involved in the development of tools that assist researchers to build databases of genomics and genetics data. Could you tell us more about projects such as Tripal?

Over the past six years, Lacey Sanderson (bioinformaticist in our group) has developed a database for our pulse research program at the University (Knowpulse, http://knowpulse.usask.ca/portal/). The database is specifically designed to present data that is relevant to breeders, as our group has a strong focus on variety development for the Canadian pulse crop industry. Knowpulse houses genotypic information from past and on-going lentil genomics projects, and includes tools for looking up genotypes as well as comparing the current genome assembly (currently v1.2) and other sequenced legume genomes. The tools are being developed in Tripal, an open-source toolkit that provides an interface between the data and a Drupal web content management system, in collaboration with colleagues at Washington State University.

 

At the moment we are developing new functionalities that will allow us to store and present germplasm information as well as phenotypic data. We are also working with our colleagues at Washington State University (under the “Tripal Gateway Project” funded by the National Science Foundation) to enhance interconnectivity between Knowpulse and other legume databases, such as the Legume Information Service (LIS) and Soybase, to facilitate comparative genomic studies.

How challenging are pulse genomes to assemble? How closely related are the various crops?

We had the fortune to lead the lentil genome sequencing initiative thanks to the support from producer groups and governments across the globe.  The lentil genome is really challenging to assemble! We see nice synteny between lentil and the model legume, medicago, however the lentil genome is much bigger. We see a significant increase in genome size between chickpea and beans versus lentil (and pea for that matter), yet we have evidence to show that genome duplication is not the cause of the size increase. There are a lot of very long repetitive elements sprinkled around the genome, which makes its sequencing and proper assembly very challenging. Not to mention understanding the role of these long repetitive elements in biological functions…

 

What insights into crop domestication have you gained from these genomes?

That’s what we are working on right now under the AGILE (“Application of Genomics to Innovation in the Lentil Economy”) project. Stay tuned!

 

Do you work with breeders to develop new cultivars? What sorts of traits are most important? 

Breeding is at the core of our work – both Kirstin and Bert are breeders (Kirstin has an active dry bean breeding program when she’s not busy with genomic research). All our research aims to feed information to the breeders so that they can make better crossing and selection decisions. Our work in herbicide tolerance has led to the development and implementation of a molecular marker to screen for herbicide resistance. With that marker we save time (skipping a crossing cycle) and forego the herbicide spraying test for all of our early materials.

Disease resistance and drought tolerance are also important for the growers. Visual quality (seed shape, size, color) are very important too as our customers are very picky as to what sort of lentils they like to buy/eat.

What does the future of legume/lentil agriculture hold?

Lentils have been a staple food in many countries for centuries and have been gaining popularity in North America in recent years as people are looking for plant-based protein sources. Lentils are high in fibre, protein, and complex carbohydrates, while low in fat and calories, and have a low glycemic index. They are suitable for vegetarian/vegan, gluten-free, diabetic, and heart-smart diets. Lentils also provide essential micronutrients such as iron, zinc and folates. Lentils are widely recognized as nutrient-dense food that could serve as part of the solution to combat global food and nutritional insecurity.

In modern agriculture, adding lentil or other leguminous crops in the crop rotation helps improve soil structure, soil quality, and biotic diversity, as well as enhancing soil fertility through their ability to fix nitrogen. Because pulse crops require little to no nitrogen fertilizer, they use half of the non-renewable energy inputs of other crops, reducing greenhouse gas emissions.

2016 was marked by the United Nations as the International Year of Pulses, which was great as many people have become more aware of the benefits of pulse crops on the plate and in the field.

 

Follow us on twitter (@Wildlentils) for research updates!

 

All images are credited to Mr Derek Wright.

Mother grain genome: insights into quinoa

By | Blog, KAUST, Research

Sales of quinoa (Chenopodium quinoa) have exploded in the last decade, with prices more than tripling between 2008 and 2014. The popularity of this pseudocereal comes from its highly nutritious seeds, which resemble grains and contain a good balance of protein, vitamins, and minerals. The nourishing nature of quinoa meant it was prized by the Incas, who called it the “Mother grain”.

Quinoa

Quinoa is a popular ‘grain’, but it is more closely related to spinach and beetroot than cereals like wheat or barley. Image credit: Flickr user. Used under license: CC BY 2.0.

Quinoa is native to the Andes of South America, where it thrives in a range of conditions from coastal regions to alpine regions of up to 4000 m above sea level. Its resilience and nutritious seeds means that quinoa has been identified as a key crop for enhancing food security, but there are currently very few breeding programs targeting this species.

The challenge of improving the efficiency and sustainability of quinoa production has so far been restricted by the lack of a reference genome. This week, a team of researchers led by Professor Mark Tester (King Abdullah University of Science & Technology; KAUST) addressed this issue, publishing a high-quality genome sequence for quinoa in Nature. They compared the genome with that of related species to characterize the evolution and domestication of the crop, and investigated the genetic diversity of economically important traits.

 

The evolution of quinoa

Tester and colleagues used an array of genomics techniques to assemble 1.39 Gb of the estimated 1.45-1.50 Gb full length of quinoa’s genome. Quinoa is a tetraploid, meaning it has four copies of each chromosome. The researchers shed light on the evolutionary history of this crop by sequencing descendants of the two diploid species (each containing two sets of chromosomes) that hybridized to generate quinoa; kañiwa (Chenopodium pallidicaule) and Swedish goosefoot (Chenopodium suecicum). Comparing these sequences to quinoa and other relatives, the team showed that the hybridization event likely occurred between 3.3 and 6.3 million years ago. A comparison with other closely related Chenopodium species also suggested that, contrary to previous predictions, quinoa may have been domesticated twice, both in highland and coastal environments.

Quinoa field

Quinoa field. Image credit: LID. Used under license: CC BY-SA 2.0.

 

Washing away quinoa’s bitter taste

Quinoa seeds are coated with soap-like chemicals called saponins, which have a bitter taste that deters herbivores. Saponins can disrupt the cell membranes of red blood cells, so they have to be removed before human consumption, but this process is costly, so quinoa breeders are always looking for varieties that produce lower levels of saponins.

Sweet (low-saponin) quinoa strains do occur naturally, but the genes that regulate this phenotype were previously unknown. Tester and colleagues investigated sweet and bitter quinoa strains and discovered that a single gene (TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR-LIKE 1 [TSARL1]) controls the amount of saponins produced in the seeds. The low-saponin quinoa strains contained mutations in TSARL1 that prevented it from functioning properly. This is a key target for the improvement of quinoa in the future, although farmers will have to find new ways to protect their crops from birds and other seed predators!

Quinoa flowers

Quinoa flowers. Image credit: Alan Cann. Used under license: CC BY-SA 2.0.

 

Quality quinoa

The high-quality reference genome for quinoa generated by Tester and colleagues is likely to be vital for allowing many exciting improvements in the future. Breeders hoping to improve the yield, ease of harvest, stress tolerance, and saponin content of quinoa can develop genetic markers to speed up breeding for these key traits, improving the productivity of quinoa varieties and enhancing future food security.

 


Read the paper in Nature: Jarvis et al., 2017. The genome of Chenopodium quinoa. Nature. DOI: 10.1038/nature21370

Thank you to Professor Mark Tester (KAUST) for providing information used in this post!

The future of phenotyping

By | Blog, Future Directions, Research

This week’s post was written by Dr Kasra Sabermanesh, Rothamsted Research.

I am a post-doctoral research scientist within Rothamsted Research’s BBSRC-funded 20:20 Wheat® program, which aims to provide the knowledge base and tools to increase the UK wheat yield potential from 8.4 to 20 tons of wheat per hectare within the next 20 years. Field phenotyping is one component of this program and facilitates the non-destructive monitoring of field-grown crops. Traditional methods of field phenotyping require huge human effort, which consequently limits the accuracy, frequency, and number of different measurements that can be taken at one time. Fortunately, Rothamsted has an exciting solution to this problem.

The Field Scanalyzer

Kasra Sabermanesh

Dr Kasra Sabermanesh shows off the Field Scanalyzer. Image credit: Rothamsted Research

Our field phenotyping platform, the Field Scanalyzer (constructed by LemnaTec GmbH and being further developed by ourselves), supports a motorized measuring platform with multiple sensors that can be accurately positioned anywhere within a dedicated field. The sensor array comprises a high-definition RGB camera, two hyperspectral cameras, a thermal infrared camera, a system for imaging chlorophyll fluorescence and twin scanning lasers for 3D information capture. Together, these sensors generate a wealth of data about crop growth, architecture, performance, and health. The Field Scanalyzer operates autonomously and in high-throughput, meaning it can take a lot of non-destructive measurements without human supervision, throughout the crops lifecycle, with high-accuracy and reproducibility. (You can read more about the Field Scanalyzer in our recent paper: http://www.publish.csiro.au/FP/pdf/FP16163).

We are currently using the Field Scanalyzer to identify new characteristics of crops that relate to performance, as well as identifying new genetic diversity for existing traits. Outputs from either of these research components can be delivered to breeders. We are screening approximately 400 wheat varieties, but also imaging some oilseed rape and oat plants.

Rothamsted Research

The scanalyzer. Image credit: Rothamsted Research

The big data problem

The Field Scanalyzer at Rothamsted is a world first, so we initially had to develop all the necessary image acquisition protocols and image processing tools, in order to exploit its full capabilities. A number of image processing tools are available; however, they are not suitable for field-grown crops, as they were not developed for complex canopies consisting of hundreds of plants in highly dynamic ambient conditions. The platform can generate up to 100 TB data with a year’s continuous operation (using all of the sensors). That’s why I work with two other post-docs to develop robust computer vision tools to automate the way we extracting quantitative image datasets. We are also validating the accuracy of the values extracted from our images by comparing them with measurements obtained manually.

Approximately 1.5 years have passed since we first began operating the Field Scanalyzer, and we have now optimized all of our image acquisition protocols and have collected a full seasonal dataset. With the good quality images stored in our database, we have developed some robust tools to automatically extract the information about some key growth stages (ear emergence and flowering), as well as quantifying height and the number of some plant organs. We are still just scraping the surface though, and have a list of traits for which we want to develop computer vision tools, in order to automatically analyze them.

Take to the skies: Drones for data collection

Some of my colleagues work with drones (UAVs) to capture information about crop height, plant density (Normalized Difference Vegetation Index), and canopy temperature from large-scale field trials containing 5000 plots. They also fly the UAVs over our Field Scanalyzer site, so we can compare data collected from the higher flying UAV with those collected from the Field Scanalyzer at close proximity. The way we see it, UAVs can image large fields in a very short time (15 min), so if we notice something interesting using the UAV at the large plot-scale, we can put the material under the Field Scanalyzer for high-resolution phenotyping. On the other hand, with the Field Scanalyzer, once we gain a better understanding of which trait/s we need to focus on, when we should be looking at them, and exactly which sensor/s are required to quantify the trait, we can deploy drones with the necessary sensors (once the sensors are portable enough) to collect this information at field-scale and at the appropriate time.

Drones at Rothamsted

Taking to the skies: Drones are used for large-scale phenotyping at Rothamsted. Credit: Rothamsted Research.

The future of phenotyping

I envision that the future of phenotyping technology will focus on reducing the cost and size of cameras/sensors, ultimately increasing their portability and accessibility. This will result in more sophisticated cameras being attached to UAVs (as many of sensors we currently use far out-weigh a UAV’s payload). Parallel to this, research efforts are focusing on developing image processing systems that efficiently extract quantitative information about the crops from acquired images. Together, phenotyping systems such as low-flying UAVs that generate easily interpreted data outputs could be developed, which may be more widely adopted by breeders and farmers to get a deeper insight into their crop’s health and performance.

2016 Plant Science Round Up

By | Blog, Research

Another fantastic year of discovery is over – read on for our 2016 plant science top picks!

January

Zostera marina

A Zostera marina meadow in the Archipelago Sea, southwest Finland. Image credit: Christoffer Boström (Olsen et al., 2016. Nature).

The year began with the publication of the fascinating eelgrass (Zostera marina) genome by an international team of researchers. This marine monocot descended from land-dwelling ancestors, but went through a dramatic adaptation to life in the ocean, in what the lead author Professor Jeanine Olsen described as, “arguably the most extreme adaptation a terrestrial… species can undergo”.

One of the most interesting revelations was that eelgrass cannot make stomatal pores because it has completely lost the genes responsible for regulating their development. It also ditched genes involved in perceiving UV light, which does not penetrate well through its deep water habitat.

Read the paper in Nature: The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.

BLOG: You can find out more about the secrets of seagrass in our blog post.

 

February 

Plants are known to form new organs throughout their lifecycle, but it was not previously clear how they organized their cell development to form the right shapes. In February, researchers in Germany used an exciting new type of high-resolution fluorescence microscope to observe every individual cell in a developing lateral root, following the complex arrangement of their cell division over time.

Using this new four-dimensional cell lineage map of lateral root development in combination with computer modelling, the team revealed that, while the contribution of each cell is not pre-determined, the cells self-organize to regulate the overall development of the root in a predictable manner.

Watch the mesmerizing cell division in lateral root development in the video below, which accompanied the paper:


Read the paper in Current Biology: Rules and self-organizing properties of post-embryonic plant organ cell division patterns.

 

March

In March, a Spanish team of researchers revealed how the anti-wilting molecular machinery involved in preserving cell turgor assembles in response to drought. They found that a family of small proteins, the CARs, act in clusters to guide proteins to the cell membrane, in what author Dr. Pedro Luis Rodriguez described as “a kind of landing strip, acting as molecular antennas that call out to other proteins as and when necessary to orchestrate the required cellular response”.

Read the paper in PNAS: Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling.

*If you’d like to read more about stress resilience in plants, check out the meeting report from the Stress Resilience Forum run by the GPC in coalition with the Society for Experimental Biology.*

 

April

Arbuscular mycorrhizal fungi.

This plant root is infected with arbuscular mycorrhizal fungi. Image credit: University of Zurich.

In April, we received an amazing insight into the ‘decision-making ability’ of plants when a Swiss team discovered that plants can punish mutualist fungi that try to cheat them. In a clever experiment, the researchers provided a plant with two mutualistic partners; a ‘generous’ fungus that provides the plant with a lot of phosphates in return for carbohydrates, and a ‘meaner’ fungus that attempts to reduce the amount of phosphate it ‘pays’. They revealed that the plants can starve the meaner fungus, providing fewer carbohydrates until it pays its phosphate bill.

Author Professor Andres Wiemsken explains: “The plant exploits the competitive situation of the two fungi in a targeted manner, triggering what is essentially a market-based process determined by cost and performance”.

Read the paper in Ecology Letters: Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism.

 

May

The transition of ancient plants from water onto land was one of the most important events in our planet’s evolution, but required a massive change in plant biology. Suddenly plants risked drying out, so had to develop new ways to survive drought.

In May, an international team discovered a key gene in moss (Physcomitrella patens) that allows it to tolerate dehydration. This gene, ANR, was an ancient adaptation of an algal gene that allowed the early plants to respond to the drought-signaling hormone ABA. Its evolution is still a mystery, though, as author Dr. Sean Stevenson explains: “What’s interesting is that aquatic algae can’t respond to ABA: the next challenge is to discover how this hormone signaling process arose.”

Read the paper in The Plant Cell: Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE, a regulator of ABA responses unique to basal land plants and required for desiccation tolerance.

 

June

Knoblauch with phloem

Professor Michael Knoblauch shows off a microscope image of phloem tubes. Image credit: Washington State University.

Sometimes revisiting old ideas can pay off, as a US team revealed in June. In 1930, Ernst Münch hypothesized that transport through the phloem sieve tubes in the plant vascular tissue is driven by pressure gradients, but no-one really knew how this would account for the massive pressure required to move nutrients through something as large as a tree.

Professor Michael Knoblauch and colleagues spent decades devising new methods to investigate pressures and flow within phloem without disrupting the system. He eventually developed a suite of techniques, including a picogauge with the help of his son, Jan, to measure tiny pressure differences in the plants. They found that plants can alter the shape of their phloem vessels to change the pressure within them, allowing them to transport sugars over varying distances, which provided strong support for Münch flow.

Read the paper in eLife: Testing the Münch hypothesis of long distance phloem transport in plants.

BLOG: We featured similar work (including an amazing video of the wound response in sieve tubes) by Knoblauch’s collaborator, Dr. Winfried Peters, on the blog – read it here!

 

July

Ancient barley grain

Preserved remains of rope, seeds, reeds and pellets (left), and a desiccated barley grain (right) found at Yoram Cave in the Judean Desert. Credit: Uri Davidovich and Ehud Weiss.

In July, an international and highly multidisciplinary team published the genome of 6,000-year-old barley grains excavated from a cave in Israel, the oldest plant genome reconstructed to date. The grains were visually and genetically very similar to modern barley, showing that this crop was domesticated very early on in our agricultural history. With more analysis ongoing, author Dr. Verena Schünemann predicts that “DNA-analysis of archaeological remains of prehistoric plants will provide us with novel insights into the origin, domestication and spread of crop plants”.

Read the paper in Nature Genetics: Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley.

BLOG: We interviewed Dr. Nils Stein about this fascinating work on the blog – click here to read more!

 

August

Another exciting cereal paper was published in August, when an Australian team revealed that C4 photosynthesis occurs in wheat seeds. Like many important crops, wheat leaves perform C3 photosynthesis, which is a less efficient process, so many researchers are attempting to engineer the complex C4 photosynthesis pathway into C3 crops.

This discovery was completely unexpected, as throughout its evolution wheat has been a C3 plant. Author Professor Robert Henry suggested: “One theory is that as [atmospheric] carbon dioxide began to decline, [wheat’s] seeds evolved a C4 pathway to capture more sunlight to convert to energy.”

Read the paper in Scientific Reports: New evidence for grain specific C4 photosynthesis in wheat.

 

September

CRISPR lunch

Professor Stefan Jansson cooks up “Tagliatelle with CRISPRy fried vegetables”. Image credit: Stefan Jansson.

September marked an historic event. Professor Stefan Jansson cooked up the world’s first CRISPR meal, tagliatelle with CRISPRy fried vegetables (genome-edited cabbage). Jansson has paved the way for CRISPR in Europe; while the EU is yet to make a decision about how CRISPR-edited plants will be regulated, Jansson successfully convinced the Swedish Board of Agriculture to rule that plants edited in a manner that could have been achieved by traditional breeding (i.e. the deletion or minor mutation of a gene, but not the insertion of a gene from another species) cannot be treated as a GMO.

Read more in the Umeå University press release: Umeå researcher served a world first (?) CRISPR meal.

BLOG: We interviewed Professor Stefan Jansson about his prominent role in the CRISPR/GM debate earlier in 2016 – check out his post here.

*You may also be interested in the upcoming meeting, ‘New Breeding Technologies in the Plant Sciences’, which will be held at the University of Gothenburg, Sweden, on 7-8 July 2017. The workshop has been organized by Professor Jansson, along with the GPC’s Executive Director Ruth Bastow and Professor Barry Pogson (Australian National University/GPC Chair). For more info, click here.*

 

October

Phytochromes help plants detect day length by sensing differences in red and far-red light, but a UK-Germany research collaboration revealed that these receptors switch roles at night to become thermometers, helping plants to respond to seasonal changes in temperature.

Dr Philip Wigge explains: “Just as mercury rises in a thermometer, the rate at which phytochromes revert to their inactive state during the night is a direct measure of temperature. The lower the temperature, the slower phytochromes revert to inactivity, so the molecules spend more time in their active, growth-suppressing state. This is why plants are slower to grow in winter”.

Read the paper in Science: Phytochromes function as thermosensors in Arabidopsis.

 

November

Ginkgo

A fossil ginkgo (Ginkgo biloba) leaf with its modern counterpart. Image credit: Gigascience.

In November, a Chinese team published the genome of Ginkgo biloba¸ the oldest extant tree species. Its large (10.6 Gb) genome has previously impeded our understanding of this living fossil, but researchers will now be able to investigate its ~42,000 genes to understand its interesting characteristics, such as resistance to stress and dioecious reproduction, and how it remained almost unchanged in the 270 million years it has existed.

Author Professor Yunpeng Zhao said, “Such a genome fills a major phylogenetic gap of land plants, and provides key genetic resources to address evolutionary questions [such as the] phylogenetic relationships of gymnosperm lineages, [and the] evolution of genome and genes in land plants”.

Read the paper in GigaScience: Draft genome of the living fossil Ginkgo biloba.

 

December

The year ended with another fascinating discovery from a Danish team, who used fluorescent tags and microscopy to confirm the existence of metabolons, clusters of metabolic enzymes that have never been detected in cells before. These metabolons can assemble rapidly in response to a stimulus, working as a metabolic production line to efficiently produce the required compounds. Scientists have been looking for metabolons for 40 years, and this discovery could be crucial for improving our ability to harness the production power of plants.

Read the paper in Science: Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum.

 

Another amazing year of science! We’re looking forward to seeing what 2017 will bring!

 

P.S. Check out 2015 Plant Science Round Up to see last year’s top picks!

2015 Plant Science Round Up

By | Blog, GPC Community, Research

Following on from last week’s post, Now That’s What I Call Plant Science 2015, we bring you a year in Plant Science!

January

Arabidopsis

Image credit: Jean Weber. Used under license CC BY 2.0.

The year began with a surprising paper that turned our understanding of the phytohormone auxin on its head. Researchers in China and the USA created Arabidopsis knockout mutants of AUXIN BINDING PROTEIN 1 (ABP1), expecting them to fail to respond to auxin and have developmental defects, as previously seen in the abp1-1 knockdown mutant. Instead, these plants were indistinguishable from wild type plants, leading the authors to conclude that ABP1 is not required for auxin signaling or Arabidopsis development as previously believed.

Read the paper in PNAS: Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development.

A paper later in the year from the same authors found that the embryonic lethality of the abp1-1 mutant is actually caused by the off-target linked deletion of the adjacent BSM gene.

Read this paper in Nature Plants: Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene.

The tale of ABP1 was examined in more detail on the GARNet blog, Weeding the Gems, which concluded: “In many ways this story is an excellent example of how science should work, where claims are independently tested to ensure that earlier experiments have been conducted or interpreted correctly.” Click here to read more.

 

February

A clever experiment from Germany led to a significant breakthrough in crop protection from insect pests.

When double-stranded RNA (dsRNA) is present within a eukaryotic cell, it is cleaved by the Dicer enzyme to form short interfering RNAs. These can bind to complementary RNA within a cell to target it for destruction, thus silencing the corresponding gene expression. This process is known as RNA interference (RNAi).

RNAi has previously been used to tackle insect herbivory by expressing insect-specific dsRNA in plants; however the protection has previously been incomplete. In this new study, published in Science, researchers produced dsRNA within chloroplasts, which do not have RNAi machinery. When dsRNA is expressed in the cytoplasm, the plant’s own Dicer enzyme breaks most of it down. When expressed in the chloroplasts, the dsRNA remained intact when eaten by insects, which proved much more effective at killing these pests.

Read the paper here: Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids.

 

March

Another crop protection study followed in March, when researchers in China cloned the genetic locus in rice that confers broad-spectrum resistance to planthoppers – insect pests that cause the loss of billions of dollars of crops per year. Three lectin receptor kinase genes were found in rice cultivars from the Philippines, which enable plants to survive an infestation of insects. When cloned into a susceptible rice cultivar, these genes conferred resistance to two different planthopper species.

Understanding the genetic basis of resistance is very important as marker-assisted breeding and selection could be used to develop resistant rice varieties, and potentially utilized in other species of cereal.

Read the paper in Nature Biotechnology: A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice

 

April

A European collaboration led to the development of 3DCellAtlas, a computational approach that semi-automatically identifies cell types in a developing 3D organ without the need for transgenic lineage markers. This program will enable the interpretation of dynamic organ growth and the spatial and temporal context of developmental cell divisions that produce the resultant plant. It could be integrated with growth in different conditions or with developmental mutants to examine exactly how these processes affect growth in 3D.

3DCellAtlas

Image credit: Montenegro-Johnson et al., 2015. Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas. The Plant Cell, vol. 27 no. 4, 1018–1033.

 

May

A special issue of the Plant Biotechnology Journal was published in May, focusing on the amazing advances in molecular farming. While the entire issue is worth delving into, we were particularly intrigued by the review on moss-made pharmaceuticals, which outlines the rapid progress made in the field.

The model moss Physcomitrella patens has rapidly become one of the organisms of choice in biotechnology, with a fully sequenced genome and an outstanding toolbox for genome-engineering. The authors describe how moss-made pharmaceuticals can easily be produced while remaining remarkably more stable from batch to batch than cultured animal cells. The system is easily scalable, making their production highly cost effective, and safe. The first moss-made pharmaceuticals are currently in clinical trials, so keep an eye out for much more from this field over the next few years.

Read the review: Moss-made pharmaceuticals: from bench to bedside.

 

June

In June, US researchers discovered a new role for chloroplast stromules, protrusions that extend from the surface of all plastid types. The function of stromules has been difficult to determine, but this research, published in Developmental Cell, suggests that they may provide a mechanism by which plastid signals are conveyed to the nucleus. The paper shows that chloroplast stromules are induced by defense responses such as programmed cell death signaling, and that the stromules extend to form dynamic connections with the nucleus. The stromules may therefore aid in the amplification and/or transport of immune response signals into the nucleus.

Read the paper: Chloroplast Stromules Function during Innate Immunity.

 

July

Extracellular self-DNA

Image credit: Veresoglou et al., 2015. Self-DNA: a blessing in disguise? New Phytologist, vol. 207, no. 3, 488–490.

In late 2014 and early 2015, Italian researchers published a set of articles showing that extracellular self-DNA, DNA from conspecifics, could inhibit the growth of organisms from a wide range of taxa, including plants, bacteria, fungi and animals. Conversely, these organisms were not affected by extracellular DNA from other unrelated species.

In July, New Phytologist published a letter offering an interpretation of the data as it relates to plants. Plants could interpret extracellular self-DNA as an indicator of intraspecific competition (which seeds could use as a cue to remain dormant) or of a hostile environment that has already caused the death of conspecifics, signaling them to ramp up their pre-emptive immune response to increase survival after neighbors have been damaged or killed. There are still a lot of mechanisms and ecological effects to be investigated in this new field, but this letter suggests several interesting avenues to investigate.

Read the article: Self-DNA: a blessing in disguise?

Original research papers in New Phytologist:

Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks?

Inhibitory effects of extracellular self-DNA: a general biological process?

 

August

A US study in August revealed a surprising degree of conservation in gene expression patterns across a wide range of plant taxa during root development. This was particularly interesting because the spikemoss Selaginella was shown to use many of the same genes as the evolutionarily distant angiosperms, despite the fossil record suggesting that roots evolved independently in these two lineages. Perhaps roots in these two groups evolved by independently recruiting the same developmental program, or perhaps by elaborating on a previously unknown proto-root that existed in the common ancestor of vascular plants.

Read the paper in The Plant Cell: Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

 

September

Salt stress can significantly reduce the growth and yield of plants. Researchers in Germany identified two components of the cellulose synthase complex that directly interact with the microtubules and promote their dynamics, which interestingly were highly produced during salt stress conditions. During salt stress, cellulose microtubules depolymerize, however the newly discovered compounds, known as Companions of Cellulose Synthase, promote the reassembly of the microtubule to allow cellulose synthesis to continue.

Read the paper in Cell: A Mechanism for Sustained Cellulose Synthesis during Salt Stress

 

October

Throughout the year the GM debate in Europe reached several important milestones. In January the European Union (EU) changed its rules, giving individual countries more flexibility to decide for themselves whether or not to plant GM crops. In February, the UK Science and Technology Committee report stated that EU regulations preventing GM crops are not fit for purpose, and that they should be replaced with a trait-based system.

In October, EU member states revealed their stances on GM crops, with over half of Europe opting out of growing GM crops. Germany was the largest country to opt out of growing GM. The full list can be viewed here: Restrictions of geographical scope of GMO.

Read the news articles here:

EU changes rules on GM crop cultivation – January 2015

EU regulation on GM Organisms not ‘fit for purpose’ – February 2015

Half of Europe opts out of new GM crop scheme – October 2015

 

November

A collaboration between South African and UK scientists revealed how plants can use their circadian clock to pre-emptively boost their immune resistance at dawn, when fungal infection is most likely. Plants tend to decrease in susceptibility at dawn, but those with dysfunctional circadian clocks remained highly susceptible throughout the day. The research also showed that jasmonate signaling plays a crucial role in the circadian timing of resistance.

Read the article in The Plant Journal: Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea.

 

December

Single nucleotide exon

Image credit: Guo & Liu., 2015. A single-nucleotide exon found in Arabidopsis. Scientific Reports, 5:18087.

Researchers in China published the surprising finding that a single-nucleotide exon exists in the APC11 gene in Arabidopsis. This is the smallest exon ever to be discovered before. The team used an elegant set of APC11-GFP constructs to show that intron splicing around the single-nucleotide exon is effective in both Arabidopsis and rice. This finding has implications for future genome annotations, which might reveal many more single-nucleotide exons.

Read the paper in Scientific Reports: A single-nucleotide exon found in Arabidopsis.

 

What a wonderful year of science! What new knowledge will 2016 bring?

Now That’s What I Call Plant Science 2015

By | Blog, Research, Science communication

With another year nearly over we recently put out a call for nominations for the Most Influential Plant Science Research of 2015. Suggestions flooded in, and we also trawled through our social media feeds to see which stories inspired the most discussion and engagement. It was fantastic to read about so much amazing research from around the world. Below are our top five, selected based on impact for the plant science research community, engagement on social media, and importance for both policy and potential end product/application.

Choosing the most inspiring stories was not an easy job. If you think we’ve missed something, please let us know in the comments below, or via Twitter! In the coming weeks we’ll be posting a 2015 Plant Science Round Up, which will include other exciting research that didn’t quite make the top five, so watch this space!

  1. Sweet potato is a naturally occurring GM crop
Sweet potato contains genes from bacteria making it a naturally occurring GM crop

Sweet potato contains genes from bacteria making it a naturally occurring GM crop. Image from Mike Licht used under creative commons license 2.0

Scientists at the International Potato Center in Lima, Peru, found that 291 varieties of sweet potato actually contain bacterial genes. This technically means that sweet potato is a naturally occurring genetically modified crop! Alongside all the general discussion about GM regulations, particularly in parts of Europe where regulations about growing GM crops have been decentralized from Brussels to individual EU Member States, this story caused much discussion on social media when it was published in March of this year.

It is thought that ancestors of the modern sweet potato were genetically modified by bacteria in the soil some 8000 years ago. Scientists hypothesize that it was this modification that made consumption and domestication of the crop possible. Unlike the potato, sweet potato is not a tuber but a mere root. The bacteria genes are thought to be responsible for root swelling, giving it the fleshy appearance we recognize today.

This story is incredibly important, firstly because sweet potato is the world’s seventh most important food crop, so knowledge of its genetics and development are essential for future food supply. Secondly, Agrobacterium is frequently used by scientists to artificially genetically modify plants. Evidence that this process occurs in nature opens up the conversation about GM, the methods used in this technology, and the safety of these products for human consumption.

Read the original paper in PNAS here.

  1. RNA-guided Cas9 nuclease creates targetable heritable mutations in Barley and Brassica

Our number two on the list also relates to genetic modification, this time focusing on methods. Regardless of whether or not we want to have genetically modified crops in our food supply, GM is a valuable tool used by researchers to advance knowledge of gene function at the genetic and phenotypic level. Therefore, systems of modification that make the process faster, cheaper, and more accurate provide fantastic opportunities for the plant science community to progress its understanding.

The Cas9 system is a method of genome editing that can make precise changes at specific locations in the genome relatively cheaply. This novel system uses small non-coding RNA to direct Cas9 nuclease to the DNA target site. This type of RNA is small and easy to program, providing a flexible and easily accessible system for genome editing.

Barley in the field

Barley in the field. Image by Moldova_field used under creative commons license 2.0

Inheritance of genome modifications using Cas9 has previously been shown in the model plants, Arabidopsis and rice. However, the efficiency of this inheritance, and therefore potential application in crop plants has been questionable.

The breakthrough study published in November by researchers at The Sainsbury Laboratory and John Innes Centre both in Norwich, UK, demonstrated the mutation of two commercial crop plants, Barley and Brassica oleracea, using the Cas9 system and subsequent inheritance mutations.

This is an incredibly exciting development in the plant sciences and opens up many options in the future in terms of genome editing and plant science research.

Read the full paper in Genome Biology here.

  1. Control of Striga growth

Striga is a parasitic plant that mainly affects parts of Africa. It is a major threat to food crops such as rice and corn, leading to yield losses worth over 10 billion US dollars, and affecting over 100 million people.

Striga infects the host crop plant through its roots, depriving them of their nutrients and water. The plant hormone strigolactone, which is released by host plants, is known to induce Striga germination when host plants are nearby.

In a study published in August of this year the Striga receptors for this hormone, and the proteins responsible for striga germination were identified.

Striga plants are known to wither and die if they cannot find a host plant upon germination. Induction of early germination using synthetic hormones could therefore remove Striga populations before crops are planted. This work is vital in terms of regulating Striga populations in areas where they are hugely damaging to crop plants and people’s livelihoods.

Read the full study in Science here.

Striga, a parasitic plant. Also known as Witchweed.

Striga, a parasitic plant. Also known as Witchweed. Image from the International Institute of Tropical Agriculture used under creative commons license 2.0

  1. Resurrection plants genome harvesting

Resurrection plants are a unique group of flora that can survive extreme water shortages for months or even years. There are more than 130 varieties in the world, and many researchers believe that unlocking the genetic codes of drought-tolerant plants could help farmers working in increasingly hot and dry conditions.

During a drought, the plant acts like a seed, becoming so dry that it appears dead. But as soon as the rains come, the shriveled plant bursts ‘back to life’, turning green and robust in just a few hours.

In November, researchers from the Donald Danforth Plant Science Centre in Missouri, US, published the complete draft genome of Oropetium thomaeum, a resurrection grass species.

O. thomaeum is a small C4 grass species found in Africa and India. It is closely related to major food feed and bioenergy crops. Therefore this work represents a significant step in terms of understanding novel drought tolerance mechanisms that could be used in agriculture.

Read the full paper in Nature here.

  1. Supercomputing overcomes major ecological challenge

Currently, one of the greatest challenges for ecologists is to quantify plant diversity and understand how this affects plant survival. For the last 500 years independent research groups around the world have collected this diversity data, which has made organization and collaboration difficult in the past.

Over the last 500 years, independent research groups have collected a wealth of diversity data. The Botanical Information and Ecology Network (BIEN) are collecting and collating these data together for the Americas using high performance computing (HPC) and data resources, via the iPlant Collaborative and the Texas Advanced Computing Center (TACC). This will allow researchers to draw on data right from the earliest plant collections up to the modern day to understand plant diversity.

There are approximately 120,000 plant species in North and South America, but mapping and determining the hotspots of species richness requires computationally intensive geographic range estimates. With supercomputing the BIEN group could generate and store geographic range estimates for plant species in the Americas.

It also gives ecologists the ability to document continental scale patterns of species diversity, which show where any species of plant might be found. These novel maps could prove a fantastic resource for ecologists working on diversity and conservation.

Read more about this story on the TACC website, here.

Great Things Sometimes Come in Small Packages

By | Blog, Research

ArabidopsisI may not be totally unbiased here because of my past involvement in the various national and international Arabidopsis projects, but there is no denying that plant science would not be where it is today if it were not for Arabidopsis. Arabidopsis is the plant that has united the world of basic plant scientists and profoundly changed the way research is conducted in plant sciences. How did this come about? Several prominent scientists described the history of Arabidopsis research from the perspective of researchers (1, 2, and 3). My answer comes from a perspective of a research administrator responsible for the management of the Arabidopsis research programs at the National Science Foundation (NSF) from 1990 through 2007.

Philip H. Abelson spoke of “a genomics revolution” in his Science editorial published in 1998 (4). He predicted that “…the greatest ultimate global impact of genomics will result from manipulation of the DNA of plants. Ultimately, the world will obtain most of its food, fuel, fiber, chemical feedstocks, and some of its pharmaceuticals from genetically altered vegetation and trees.” His concluding sentence read, “Today, humans employ the capabilities of only a few plants. A major challenge is to explore the opportunities inherent in some of the hundreds of thousands of them.”

As the editorial was being written, a plant genomics revolution was well underway through the internationally coordinated effort to sequence the whole genome of Arabidopsis by the Arabidopsis Genome Initiative (AGI), a consortium of 6 laboratories from U.S., E.U., France, and Japan. The AGI’s work resulted in a paper published in Nature in December of 2000 (5), a first complete genome analysis for a plant and the second for a higher eukaryote. This project differed from traditional research projects in that the goal of the project was not to answer a specific scientific question, but rather to deliver a high quality whole genome sequence of Arabidopsis – a research resource/tool – for the use of the entire community. It was a highly sophisticated service project. AGI members were required to share credit equally not in proportion to individual members’ contributions. Although it took four years for the AGI to complete sequencing of the entire Arabidopsis genome, the sequence data were immediately made available to the public as they were produced. This was a total departure from the previous practice in which the data were not expected to be shared until they were thoroughly analyzed and the result published by the researcher who produced them. In a sense, the AGI researchers were pioneers in opening up a new type of scientific project. I witnessed disagreements and consternations that occurred throughout the project, but in the end the voice of reason always prevailed. I think the Arabidopsis community matured greatly through the whole genome sequencing project. This type of service project has since become an integral part of research portfolio in plant sciences. As a result, individual researchers regardless of their locations can access and mine the data for their own purposes, greatly leveling the playing field and accelerating the advancement of plant sciences as a whole.

AGIGroupRemarkable as the AGI’s success was, it did not just happen. In the background was the culture characterized by the spirit of cooperation through open communication and sharing of ideas and information. The culture was initially fostered by the small number of laboratories working on Arabidopsis and was quickly embraced by the Arabidopsis community. The Arabidopsis community established the Multinational Coordinated Arabidopsis Thaliana Genome Research Project, hereafter referred to as “the Project,” in 1990. The whole genome sequencing project was part of the Project’s long-range plan (6). We should also remember that the AGI received strong support and encouragement from a broad community of plant scientists. Prior to the start of the sequencing project in 1996, NSF heard from a number of individual plant scientists urging NSF to support an Arabidopsis whole genome sequencing project even though it could have meant less money available for their individual research grants. Furthermore, NSF received strong support from several agricultural commodity groups for using part of the plant genome research program’s fund, which was appropriated to support basic research in economically important plants, for the purpose of accelerating the Arabidopsis genome sequencing project. Not to take away the credit from the AGI researchers that they so richly deserve, I believe that the completion of Arabidopsis whole genome sequencing and subsequent scientific and technological advances in plant sciences were made possible by the global community of scientists who shared the same goal – to understand what makes a plant a plant from the molecular to the ecosystem levels.

Machi and DrOAs Arabidopsis united basic plant science researchers, it also brought together the funding agencies that supported plant science research. As researchers were organizing the Project, NSF was conducting discussions with its sister funding agencies in the U.S. and counterpart agencies in Europe. By the time the Project was launched at the 4th International Conference on Arabidopsis Research in Vienna in 1990, there was an agreement among NSF, NIH, DOE and USDA in the U.S., and an informal agreement among NSF, EC, BBSRC, and DFG to collaborate and coordinate support of an international Arabidopsis research project. These agencies also agreed to keep it simple and nimble by not establishing an official joint funding program and by not pooling any funds. They further agreed that all the funding agencies would share credit of the Project equally, not in proportion to their individual contributions. In essence, the funding agencies had a sense of joint ownership of the Project. There was also close communication between the funding agency representatives and the Arabidopsis research community, which contributed to the success of the Arabidopsis research project.

The 25th International Conference on Arabidopsis Research (ICAR) will take place July 28 – August 1, 2014, in Vancouver, Canada. ICAR was a component of the original Project’s plan as a means to promote exchange of ideas and sharing of information. A majority of the 25th ICAR participants have likely entered the field after the Project started, and at least half of them do not know the time when there were no freely available research resources and tools. To me, that is the most precious outcome of the Project, namely new generations of plant scientists to whom international collaboration and sharing of ideas and research resources are an ingrained part of their research culture.

Today, the challenge Abelson spoke of in his editorial is being addressed by the world’s plant scientists through the Global Plant Council. Certainly, plant science research is still woefully underfunded in relation to the enormous contributions it can make to solving the world food and energy problems. However, I am very optimistic about the future because I have total confidence in the extraordinary ability of the plant science research community to put the higher goals ahead of individual needs and wants, and to complement their individual strengths through international collaboration and coordination.

Machi F. Dilworth

U.S. National Science Foundation (Retired)

 

Reference:

  1. David W. Meinke, J. Michael Cherry, Caroline Dean, Steven D. Rounsley, and Maarten Koornneef. “Arabidopsis thaliana: A Model Plant for Genome Analysis” 1998: Science 282, 662-682
  2. Elliot M. Meyerowitz. “Prehistory and History of Arabidopsis Research”. 2001: Plant Physiology 125, 15-19 ( http://www.plantphysiol.org/content/125/1/15.short)
  3. Chris Somerville and Maarten Koornneef “A fortunate choice: the history of Arabidopsis as a model plant”. 2002: Nature Reviews Genetics 3, 883-889
  4. Phillip H. Abelson. “A third Technological Revolution”, 1998: Science 279, 2019.
  5. The Arabidopsis Genome Initiative. “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana”. 2000: Nature 408, 796-815. http://www.nature.com/nature/journal/v408/n6814/full/408796a0.html)   
  6. “Long range plan for the Multinational Coordinated Arabidopsis thaliana Genome Research Project”. 1990. (https://www.arabidopsis.org/portals/masc/Long_range_plan_1990.pdf)