For the first-time we can take a molecular-level look at one of the world’s deadliest crop killers. The Luteoviridae are pathogenic plant viruses responsible for major crop losses worldwide. Transmitted by aphids, the viruses infect a wide range of food crops including cereals, legumes, cucurbits, sugar beet, sugarcane and potato.
A new study has identified a family of genes in cyanobacteria that help control carbon dioxide fixation. The discovery furthers our basic knowledge of photosynthesis. It also opens new doors to design systems for sustainable biotech production.
A newly discovered protein turns on plants’ cellular defence to excessive light and other stress factors caused by a changing climate, according to a new study. Understanding how plants respond to stressors may allow scientists to develop ways of protecting crops from increasingly harsh climate conditions.
Researchers have developed an improved assembly of the genome for the date palm using long-read sequencing technology. This improvement over the current versions of the genome will help advance further research, and also inform the propagation practices of this essential MENA region food source.
Oaks have a complex evolutionary history that has long eluded scientists. New research, however, provides the most detailed account to date of the evolution of oaks, recovering the 56-million-year history that has made the oaks one of the most diverse, abundant and important woody plant groups to the ecology and economy of the northern hemisphere.
Most plants have plenty of enemies, from insects and other grazing creatures to various diseases, droughts and many other stressors.
Plants respond to injuries or illnesses by initiating various defense measures. But a viral infection requires a completely different response than desiccation, of course.
To know more about its attacker, the cell relies on mechanical and chemical signals.
The intensity of summer algal blooms has increased over the past three decades, according to a first-ever global survey of dozens of large, freshwater lakes.
Leaves display a remarkable range of forms from flat sheets with simple outlines to the cup-shaped traps found in carnivorous plants.
A general question in developmental and evolutionary biology is how tissues shape themselves to create the diversity of forms we find in nature such as leaves, flowers, hearts and wings.
Study of leaves has led to progress in understanding the mechanisms that produce the simpler, flatter forms. But it’s been unclear what lies behind the more complex curved leaf forms of carnivorous plants.
Previous studies using the model species Arabidopsis thaliana which has flat leaves revealed the existence of a polarity field running from the base of the leaf to the tip, a kind of inbuilt cellular compass which orients growth.
To test if an equivalent polarity field might guide growth of highly curved tissues, researchers analysed the cup-shaped leaf traps of the aquatic carnivorous plant Utricularia gibba, commonly known as the humped bladderwort.
The team of Professor Enrico Coen used a combination of 3D imaging, cell and clonal analysis and computational modelling to understand how carnivorous plant traps are shaped.
These approaches showed how Utricularia gibba traps grow from a near spherical ball of cells into a mature trap capable of capturing prey.
By measuring 3D snapshots of traps at various developmental stages and exploring computational growth models they showed how differential rates and orientations of growth are involved.
The team used fluorescent proteins to monitor cellular growth directions and 3D imaging at different developmental stages to study the changing shape of the trap.
The computational modelling used to account for oriented growth invokes a polarity field comparable to that proposed for Arabidopsis leaf development, except that here it propagates within a curved sheet.
Analysis of the orientation of quadrifid glands, which in Utricularia gibba are used for nutrient absorption, confirmed the existence of the hypothesised polarity field.
The study which appears in the Journal PLOS Biology concludes that simple modulation of mechanisms underlying flat leaf development can also account for shaping of more complex 3D shapes.
One of the lead authors Karen Lee said, “A polarity field orienting growth of tissue sheets may provide a unified explanation behind the development of the diverse range of leaves we find in nature.”
The study, done in collaboration with the group of Minlong Cui at Zhejiang University in China
Read the paper: PLOS Biology
Article source: John Innes Centre
Image credit: Karen Lee, Yohei Koide, John Fozard and Claire Bushell.
Hybrid plants – those produced by crossing two different types of parents – often die in conditions in which both parents would survive. It’s called hybrid lethality.
An international team of scientists has developed a new approach that enables researchers to more efficiently identify the genes that control plant traits. This method will enable plant breeders and scientists to develop more affordable, desirable, and sustainable plant varieties.