Category

GPC Community

Aquaporins capable of functioning as all-in-one osmotic systems

By | Blog, GPC Community
Caitlin Byrt

Dr Caitlin Byrt, University of Adelaide

This week’s post was written by Dr Caitlin Byrt, University of Adelaide, whose research focuses the roles of water-channeling proteins – aquaporins – and ion transport in plants.

 

Aquaporins are water-channel proteins that move water molecules through cell membranes. They are found in every kingdom of life. Cell membranes are semi-permeable to water, but often require more rapid movements of water across membranes; cells achieve this using aquaporins.

Aquaporins play key roles in your kidneys, which typically filter each of the three liters of plasma in your body 60 times per day – that’s 180 liters of plasma each day! Around three times your body weight in water passes through your own aquaporins each day.

Water on leaf

Around 50% of global rainfall passes through plants, and half of this moves through the aquaporins. Image credit: Dennis Seiffert. Used under license: CC BY-ND 2.0.

Aquaporin function

Have you got on the scales recently? Nearly 70% of your body weight is water. Water is the major component of cells in all of your tissues and this is the same for plants. Around 50% of global precipitation passes through plants, and half of this moves through aquaporins, so aquaporins account for the largest movement of mass for any protein on earth.

Often, in cell membranes, four aquaporin proteins will come together to form a tetramer to assist with the transportation of water across the cell membrane. There are types of aquaporins that only transport water, and others that transport glycerol, neutral acids or gasses. Historically, plant science literature has reported that the molecular structure of aquaporins prevents any charged particles, such as ions, from permeating. This is different in the animal world where there are reports of aquaporins that are permeable to ions. For example, in humans one of the most highly expressed aquaporins, AQP1, can function as a dual water and ion channel.

 

Testing plant aquaporins in frog cells

Recently, we observed that one of the most highly expressed plant aquaporins is permeable to ions when expressed in heterologous systems such as Xenopus laevis (frog) oocyte (egg) cells or yeast cells. This indicates that plants may also have types of aquaporins that can function as a dual water:ion channels.

 

Xenopus oocytes

The function of plant aquaporins can be studied by expressing them in different systems such as the Xenopus laevis oocyte cells pictured here. Photo credit: Dr Caitlin Byrt.

 

If you want to know if a particular plant aquaporin can function as a water channel you can test it by expressing the aquaporin in a laboratory oocyte expression system. We use a tiny needle to inject RNA coding for plant aquaporins of interest into the oocyte, and for control oocytes we inject the same amount of water. The oocytes are kept in a saline solution and we usually study them one or two days after injecting the RNA to allow time for them to synthesize the protein.

If you place oocytes expressing an aquaporin into water alongside control oocytes, then the aquaporin-expressing oocytes will burst much quicker than the controls because water rushes in through the aquaporin and causes the cell to swell rapidly. To explore whether a protein conducts ions, we use electrodes to measure the currents generated when charged ions pass across the oocyte membrane. We can also use ion-specific electrodes to explore which ions are transported.

 

AtPIP2;1 can transport water and ions

The plant aquaporin we studied is coded in the genome of the model plant Arabidopsis; it is a plasma membrane-located protein called AtPIP2;1. The AtPIP2;1 protein is known to be highly prevalent in root epidermal cell membranes, and it also functions in the guard cells of leaves, which act like tiny valves to regulate the uptake of carbon dioxide for photosynthesis and the release of water vapor.

 

AtPIP2 Arabidopsis

The model plant Arabidopsis has an aquaporin, AtPIP2;1, that can function as a dual water:ion channel. Photo credit: Dr. Jiaen Qiu.

 

We observed that AtPIP2;1 expression induces both water and ion (salt) movement across the cell membrane of oocytes. We know that the ionic conductance can be carried in part by sodium ions and that it is inhibited by calcium, cadmium and protons. This means AtPIP2;1 is a candidate for a previously reported calcium-sensitive non-selective cation channel responsible for sodium ion entry into Arabidopsis roots in saline conditions.

We are investigating the physiological role of ion permeable aquaporins in plants, and exploring how plants regulate the coupling of ion and water flow across key membranes. The regulation of ion permeability through plant aquaporins could be important in the control of water flow and regulation of cell volume. There is increasing discussion around the hypothesis that plants could drive water transport in the absence of water potential differences using salt and water co-transport, and this makes us wonder whether ion-permeable aquaporins may be involved. Testing whether ion-permeable aquaporins can function as an ‘all-in-one’ osmotic system in plants is an exciting new direction for research in this field.

 

Caitlin Byrt and Steve Tyerman

Dr. Caitlin Byrt, Professor Steve Tyerman and colleagues are investigating whether aquaporins permeable to ions are present in a range of different plant species. Photo credit: Wendy Sullivan

 

More information:

Byrt, C.S., Zhao, M., Kourghi, M., Bose, J., Henderson, S.W., Qiu, J., Gilliham, M., Schultz, C., Schwarz, M., Ramesh, S.A., Yool, A., and Tyerman, S.D., 2016. Non‐selective cation channel activity of aquaporin AtPIP2; 1 regulated by Ca2+ and pH. Plant, Cell & Environment.

Yool, Andrea J., and Alan M. Weinstein. New roles for old holes: ion channel function in aquaporin-1. Physiology 17.2 (2002): 68-72.

Temperate matters in agriculture

By | Blog, Future Directions, GPC Community

twittergfsblogthumbnailevangeliakougioumoutzinov2016

Most of the world’s food is produced in temperate zones. The Global Food Security program’s Evangelia Kougioumoutzi reports on the TempAg network.

Agricultural production in temperate regions is highly productive with a significant proportion of global output originating from temperate (i.e. non-tropical) countries – 21% of global meat production and 20% of global cereal production [link opens PDF] originate from Europe alone. This proportion is very likely to increase in light of climate change.

Temperature zones

Little fluffy clouds: temperate zones are well suited to agricultural production. Image credit: connect11/Thinkstock

TempAg is an international research collaboration network that was established to increase the impact of agricultural research and inform policy making in the world’s temperate regions. Its work does not solely focus on research, but also provides insights into current thinking through mapping existing scientific findings and outstanding knowledge gaps. In this way, the network aspires to become a platform for the alignment of national agricultural research and food partnership programs (such as Global Food Security) that will enable the development of more effective agricultural policies with a long-term vision.

Since its official inauguration in Paris in April 2015, TempAg has been leading a series of on-going workstreams around:

  • Boosting resilience of agricultural production systems at multiple scales and levels
  • Optimising land management for ecosystem services and food production
  • Improving sustainability of food productivity in the farms & enterprise level

You can read more about these themes on the TempAg website: http://tempag.net/themes/.

Future foresights

After 18 months of existence, TempAg held a foresight workshop in London on 5–7 October to determine its future priorities.

Forty delegates took part in the workshop, coming from the 14 different countries in the temperate region, and from academia, policy, industry, and professionals at the science–policy interface. Through a series of presentations and interactive sessions, participants were invited to consider what the current and future challenges are in temperate agriculture, taking into account the needs of policy makers and industry in helping them to improve sustainable agriculture practices.

 

Temperate zones

Temperate zones cover much of the world’s major food-growing areas. Image from Wikipedia/CIA-Factbook

 

To tackle sustainability in temperate agriculture, there is a need to better manage risks and stresses (both biotic and abiotic), as well as finding ways to manage the restoration of natural capital, ecosystem services, and soils. During the workshop, it was noted that utilizing the diversity within different agricultural systems, via identifying the best practice and using the appropriate technological mix, may be a way forward in making production systems more sustainable.

Participants stressed the importance of taking a holistic view of the sustainability agenda within agriculture, without just focusing on environmental aspects. This means also taking into consideration socioeconomic factors, such as making food value chains (like turning milk into cheese), more equitable by identifying who gets the equity from the food commodities’ prices, or identifying what the optimum legal framework for sharing data might be.

The group also considered sustainable agriculture issues from a policy and industry needs angle. It was interesting to see that dealing with shocks (environmental, socioeconomic, and technological) featured highly in this discussion as well. It was suggested that increasing resilience to these shocks could be facilitated via the widespread diffusion of existing technologies. Engaging with farmers during this time would be necessary to identify technology uptake barriers.

Forward moves

Future-proofing agricultural resilience and enhancing the capacity to respond to shocks was deemed an urgent priority, so the development of a comprehensive map identifying the multiple shocks that could impact on farm resilience in temperate zones might be a future workstream for TempAg. Work in this area could help develop models to assess the flexibility within agricultural production systems.

 

What we eat is largely based on the types of food we produce. Therefore, healthy diets are intrinsically linked with our production systems. Another area of interest for TempAg could be to explore what the nutritional value of crops should be for better health, and what a nutritional diet will look like for sustainable temperate agriculture. Developing frameworks in this area could further inform future farming practices in temperate areas.

Since TempAg’s initiation, two major global policy agendas have been adopted by the international community: the Sustainable Development Goals and the Paris COP21 agreement. Identifying what types of data and scientific evidence policy makers will need to achieve the agriculture-relevant targets was another area where TempAg could focus its activity moving forward.

Finally, delegates highlighted areas of work that could help to build more effective policies with a longer-term vision. These included developing economic tools for valuing natural capital and ecosystem services, as well as integrated assessment tools to monitor the performance and impact (environmental cost) of existing policies.

This article is cross-posted with the Global Food Security blog.


About Evangelia Kougioumoutzi

Evangelia is International Coordinator & Programme Manager for the Global Food Security program (GFS). Before joining GFS, Evangelia worked as an Innovation Manager for GFS partners BBSRC. She holds a PhD in plant development and genetics from the University of Oxford.

 

Flipping the symposium

By | Blog, GPC Community, Scientific Meetings
screen-shot-2016-10-24-at-18-38-05

Answers to the question: “Which crop species are most critical with regard to stress resilience?”

Lisa Martin, GPC Outreach & Communications Manager

GPC Executive Director Ruth Bastow and I recently travelled to Australia to hold the GPC’s annual general meeting – but we didn’t go all that way for a one-day meeting! We also took the opportunity to attend ComBio 2016, a large conference jointly hosted by the Australian Society for Biochemistry and Molecular Biology, the Australia and New Zealand Society for Cell and Developmental Biology, and GPC Member Organization the Australian Society of Plant Scientists.

Sadly, one person was conspicuous by his absence – GPC President Bill Davies, who had been due to give more than one talk at the conference, was unable to fly out to Australia at very short notice. While Ruth and our Chair Professor Barry Pogson could cover his talk during the GPC’s own lunchtime symposium, this left Dr Rainer Hofmann’s ‘Abiotic Stress and Climate Change’ session one speaker short at the last minute!

Answers to the question, "Which challenges do these crops face?"

Answers to the question, “Which challenges do these crops face?”

Fortunately Rainer, who happens to be a representative to the GPC for the New Zealand Society of Plant Biology, found a quick solution to the hole in his program: it was time for a bit of audience participation!

The ‘flipped classroom’ is an approach I’d heard of, but was not overly familiar with – however, according to Rainer it is used quite extensively in New Zealand, where plant biologists can be geographically isolated. Unlike the traditional university lecture, in which the teacher gives a presentation and the students go away to consolidate what they have learned with revision notes or problems to solve, the flipped classroom turns this model on its head. Instead, students are given the subject content to learn in advance, then bring their own questions to the lecture.

Arguably, this approach makes better use of students’ contact time and the lecturer’s expertise, and provides a richer and more independent learning experience. This model also works very well in distance learning: topic notes and presentation slides can be emailed out in advance, then a video-linked webinar can be used to connect students and teachers, and a web-tool like Socrative Student can be used to ask and answer questions online.

Answers to the question, "What are key solutions to address these challenges, in the next 3 years and in the longer term?"

Answers to the question, “What are key solutions to address these challenges, in the next 3 years and in the longer term?”

Rainer used this idea to fill the gap in his symposium – and it was great! He asked three important questions, and members of the audience were invited to provide short answers via the Socrative Student platform using their computers, cell phones or tablets – answers were then displayed on a screen in real time. Thank goodness for WiFi! The questions and answers can be seen in the word clouds we’ve created here – the size of the word provides an indication of the frequency of that particular response, so it’s easy to see which were the most and least popular answers. These responses provided useful, engaging stimuli for audience-led discussion – I’d really like to see this model used at other meetings!

The three questions asked were:

  1. Which crop species are most critical with regard to stress resilience?
  2. Which challenges do these crops face?
  3. What are key solutions to address these challenges, a) in the next three years, and b) in the longer term?

What would your answers have been? Leave us a comment below!

Down Under: the Global Plant Council’s 2016 AGM

By | Blog, GPC Community, Scientific Meetings

img_20161006_075356Lisa Martin, GPC Outreach & Communications Manager

As a truly global organization, the Global Plant Council hosts its annual general meeting (AGM) on a different continent each year, to give our members from far-flung corners of the globe the opportunity to come together to celebrate progress and discuss future strategies to develop plant science for global challenges.

With our current Chair Professor Barry Pogson hailing from ‘down under’, this year’s AGM was held in Brisbane, Australia, which made for a warm, sunny change from autumnal London for Ruth and I!

Starting bright and early at 8 am on Monday 3rd October, representatives from the GPC’s member societies joined the GPC’s Executive Board at a hotel in Brisbane’s central business district. After a welcome from the Chair, and a minute’s respectful silence to remember our former Board Member Professor Carl Douglas, who sadly passed away earlier this year, introductions were made and we got down to business. Ruth and myself first provided introductions to, and updates on, the main GPC initiatives and activities.

screen-shot-2016-11-09-at-12-10-52

While waiting for our Stress Resilience white paper to be published, why not read our Nutritional Security report? (Link opens PDF – right-click and save-as to download a copy to your computer!)

The DivSeek initiative continues to grow in strength and numbers, with 67 partner organizations now committed to working together to address genomic and phenomic data challenges in plant science. With funding from the UK’s Biotechnology and Biological Sciences Research Council Ruth has been providing essential coordination services specifically for this project, and with DivSeek Chair (Professor Susan McCouch) and a Steering Committee in place, the initiative is making real progress; a number of working groups have been launched to actively engage DivSeek partners and help the initiative advance its mission and aims.

Our other major, current initiative is in the area of Stress Resilience. As you may have read around this time last year, the GPC held a workshop and discussion forum on the subject of ‘Stress Resilient Cropping Systems for the Future’, in conjunction with our 2015 AGM in Brazil. This successful two-day event brought together experts in this area to share and showcase new research, tools and techniques. We are now turning our discussions from this meeting into a forthcoming white paper, and hopefully a commentary or two for publication in a high impact journal – we’ll let you know when these have been launched!

img_0739

Lisa talked to the Global Plant Council about our successful outreach and communications activities. Do you follow us on Twitter or Facebook?

Then it was my turn to speak on the subject of outreach and communication. With much help from our New Media Fellow (NMF) Sarah Jose (and our former NMF Amelia-Frizell Armitage, who left the GPC for a new job earlier this year), the GPC’s social media efforts have been tremendously successful this year. We now have nearly 3000 followers on Twitter, hundreds of ‘fans’ on Facebook, and over 1200 subscribers to our monthly e-Bulletin (though readership is much wider, thanks to many of our Member Organizations who also distribute this newsletter!). We were also pleased to welcome Current Plant Biology to our journal supporters; they join Journal of Experimental Botany, Nature Plants and New Phytologist in providing some financial sponsorship to support our outreach efforts.

In other activity updates, we discussed Plantae, the social media-cum-knowledge hub that the GPC has been working on developing with the American Society of Plant Biologists. Plantae is in beta testing mode to capture feedback on the design and user experience, but is growing and evolving all the time. We encourage you to register an account and sign up, if you haven’t already done so!

Sadly our President Bill Davies was unable to attend the AGM, but Ruth and Barry explained the premise of a new GPC Knowledge Exchange initiative that Bill is working hard to get off the ground. If successful in securing funding to progress this project, we hope to be involved with the development of an online training platform to transfer knowledge from the laboratory to the field – an exciting idea that will, we hope, be of invaluable benefit to communities in developing regions.

screen-shot-2016-11-09-at-14-37-18As with many research networks and non-profit organizations, securing long term funding for the GPC is a continual challenge. The GPC’s main source of income is its member organizations; a revised membership fee structure was agreed at last year’s AGM, but further refinement and additional sources of funding will be required to ensure the continued sustainability of the GPC. As such we are actively seeking donations to help us continue the work of GPC so if you would like to make a contribution to support our efforts, you can do so via our PayPal giving link here: https://globalplantcouncil.org/donate.

Happily, we are pleased to welcome three new affiliate members to our ranks – the Center for Plant Aging Research in Korea, the Max Planck Institute for Molecular Plant Physiology in Germany, and the ARC Centre of Excellence in Plant Energy Biology in Australia.

Before discussing the GPC’s vision for the future, we took the opportunity to hear from our Member Organizations about what they would like the GPC to do for them, and what they can do for us. Lots of excellent suggestions for cross-collaborations, outreach, and novel funding sources were made, and we will be eagerly following up on these in the coming months – watch this space!

Aside from plant science, we found some time to familiarize ourselves with the local wildlife!

Aside from plant science, we found some time to familiarize ourselves with the local wildlife!

In addition to the AGM GPC also hosted a lunchtime symposium during the ComBio 2016 meeting, entitled, “Addressing Global Challenges in Plant Science: the Importance of Co-operation beyond National Boundaries”. During this session, we showcased exemplar projects involving multi-national stakeholders, stressing that global challenges need global solutions, and highlighting the unique and essential role that GPC plays.

Ruth spoke about DivSeek, GPC Treasurer Vicky Buchanan-Wollaston spoke about our Stress Resilience initiative, and Barry provided an overview of the Nutritional Security Initiative and also filled in for Bill by talking about our proposed plans for the knowledge exchange platform mentioned above. Professor Andy Borrell from the University of Queensland also gave an engaging and insightful talk about why a transnational approach to plant, crop and agricultural science is needed, highlighting some of the real-world scenarios where the GPC might offer practical, proactive support for research across borders.

It was fantastic to see over 70 plant scientists who gave up their lunchtime to attend our symposium – there were plenty of questions and very positive feedback at the end that we hope this will spark new ideas, interactions and collaborations. We felt very encouraged by the interest in and support for the GPC and its initiatives, and look forward to being able to continue serving the global plant science community.

Cassava brown streak: lessons from the field

By | Blog, GPC Community

This week’s post was written by Katie Tomlinson, a PhD student at the University of Bristol, UK, who spent three months as an intern at the National Crops Resource Research Institute in Uganda. She fills us in on the important research underway at the Institute, and how they communicate their important results to local farmers and benefit rural communities.  

Over the summer, I had a great time at the National Crops Resources Research Institute (NaCRRI) in Uganda. I’m currently in the second year of my PhD at the University of Bristol, UK, where I’m researching how the cassava brown streak disease (CBSD) viruses are able to cause symptoms, replicate and move inside plants. I was lucky enough to be given a placement at NaCRRI as part of the South West Doctoral Training Partnership Professional Internship for PhD Students (PIPS) scheme, to experience the problem for myself, see the disease in the field, meet the farmers affected and investigate the possible solutions.

 

Cassava brown streak disease

Cassava brown streak disease symptoms on tubers. Image credit: Katie Tomlinson.

 

Cassava is a staple food crop for approximately 300 million people in Africa. It is resilient to seasonal drought, can be grown on poor soils and harvested when needed. However, cassava production is seriously threatened by CBSD, which causes yellow patches (chlorosis) to form on leaves and areas of tubers to die (necrosis), rot and become inedible.

Despite being identified in coastal Tanzania 80 years ago, CBSD has only been a serious problem for Uganda in the last 10 years, where it was the most important crop disease in 2014–2015. The disease has since spread across East Africa and threatens the food security of millions of people.

NaCRRI is a government institute, which carries out research to protect and improve the production of key crops, including cassava. The focus is on involving farmers in this process so that the best possible crop varieties and practices are available to them. Communication between researchers and farmers is therefore vital, and it was this that I wanted to assist with.

 

Scoring cassava brown streak disease

Scoring cassava plants for Cassava brown streak symptoms. Image credit: Katie Tomlinson.

 

When I arrived I was welcomed warmly into the root crop team by the team leader Dr Titus Alicai, who came up with a whole series of activities to give me a real insight into CBSD. I was invited to field sites across Uganda, where I got to see CBSD symptoms in the flesh! I helped to collect data for the 5CP project, which is screening different cassava varieties from five East and Southern African countries for CBSD and cassava mosaic disease (CMD) resistance. I helped to score plants for symptoms and was fascinated by the variability of disease severity in different varieties. The main insight I gained is that the situation is both complex and dynamic, with some plants appearing to be disease-free while others were heavily infected. There are also different viral strains found across different areas, and viral populations are also continually adapting. The symptoms also depend on environmental conditions, which are unpredictable.

I also got to see super-abundant whiteflies, which transmit viruses, and understand how their populations are affected by environmental conditions. These vectors are also complex; they are expanding into new areas and responding to changing environmental conditions.

It has been fascinating to learn how NaCRRI is tackling the CBSD problem through screening different varieties in the 5CP project, breeding new varieties in the NEXTGEN cassava project, providing clean planting material and developing GM cassava.

 

Tagging cassava plants

Tagging cassava plants free from Cassava brown streak disease for breeding. Image credit: Katie Tomlinson.

 

And there’s the human element…

In each of these projects, communication with local farmers is crucial. I’ve had the opportunity to meet farmers directly affected, some of whom have all but given up on growing cassava.

 

Challenging communications

Communicating has not been easy, as there are over 40 local languages. I had to adapt and learn from those around me. For example, in the UK we have a habit of emailing everything, whereas in Uganda I had to talk to people to hear about what was going on. This is all part of the experience and something I’ll definitely be brining back to the UK! I’ve had some funny moments too… during harvesting the Ugandans couldn’t believe how weak I was; I couldn’t even cut one cassava open!

 

Real world reflections

I’m going to treasure my experiences at NaCRRI. The insights into CBSD are already helping me to plan experiments, with more real-world applications. I can now see how all the different elements (plant–virus–vector–environment–human) interact, which is something you can’t learn from reading papers alone!

Working with the NaCRRI team has given me the desire and confidence to collaborate with an international team. I’ve formed some very strong connections and hope to have discussions about CBSD with them throughout my PhD and beyond. It’s really helped to strengthen collaborations between our lab work in Bristol and researchers working in the field on the disease frontline. This will help our research to be relevant to the current situation and what is happening in the field.

 

Some of the NaCRRI team

Saying goodbye to new friends: Dr. Titus Alicai (NaCRRI root crops team leader), Phillip Abidrabo (CBSD MSc student) and Dr. Esuma Williams (cassava breeder). Image credit: Katie Tomlinson.

 

In Nature Plants: Come together

By | Blog, GPC Community

This post is republished with permission from Nature Plants.

Science is not a solo endeavour but a social one, and the most social part is conference attendance. Regardless of their other strengths and weaknesses, scientific meetings are critical for encouraging researchers early in their careers.

Conference

Image credit: Dion Hinchcliffe. Used under license: CC BY-SA 2.0.

Unquestionably, one of the most enjoyable aspects of being a journal editor is the opportunity to attend conferences. While the average scientist may get to one or two scientific meetings a year, we try to get to many more — and so are in a good position to compare the different styles of meeting, and to try to understand what makes a conference not just good, but great.

Mainly, it is the people who are attending. Meetings are exactly what the name implies: an opportunity to meet colleagues and discuss science. But there are many factors that determine who will attend a conference, and whether they will get to talk constructively while they are there. Location is important. Many scientific conferences are held in places well worth visiting in their own right. Last year’s International Plant Molecular Biology Congress, for example, was held near Iguazú Falls, Brazil; the XIV Cell Wall Meeting was held this year on the Greek island of Crete; and, next year, the Plant Biology 2017 conference of the American Society of Plant Biology (ASPB) will be in Honolulu, Hawaii. However, as much as exotic locations may be a draw for participants, the long and expensive journeys can be a deterrent.

Conference

Image credit: Dimitris Kalogeropoylos. Used under license: CC BY-SA 2.0.

An additional factor is the breadth, or narrowness, of focus of a meeting, which affects both its size and atmosphere. Larger meetings with a broad range of topics guarantee that there will be something of interest to everyone. These can be superb at giving a broad view of the important questions currently being addressed in a field, and usually have presentations by impressive well-known and well-practiced speakers. However, it can be difficult to meet all the people with whom you want to chat without considerable dedication and forward planning.

You often see a reluctance in speakers to present new and unpublished work at larger meetings. For that, smaller meetings come into their own, where a more tightly defined community makes it more appealing to share confidences in a room perceived to be full of ‘friends’. If the location is remote, so much the better, as it forces that community closer together. The summertime masters of such meetings are the Gordon Research Conferences, which are often (though not exclusively) held in out-of-season New England boarding schools — two of which, this year, are the Plant Molecular Biology and Plant & Microbial Cytoskeleton meetings. In the winter, there are the Keystone Symposia, which have the added attraction of afternoons left free for skiing. In fact, the conversations had while trapped on a ski lift can often be the most scientifically productive of the whole event.

Presentation

Image credit: NASA Goddard Space Flight Center. Used under license: CC BY 2.0.

More focused meetings will usually give attendees the opportunity to attend every talk, but larger conferences frequently host parallel sessions to allow many more topics to be discussed. Successfully presenting parallel sessions is hard. Ideally the topics covered should overlap so little that every attendee would wish to attend one session, and one session only — a goal never fully achieved, and rarely even approached. Instead, attendees must pick the talks that they most want to see, which are often presented in different sessions, leading to a lot of distracting crowd movement between talks. For sessions to remain synchronized, speakers must keep strictly to their allotted time — again something so difficult to achieve that it rarely, if ever, happens.

At its heart, the main point of a scientific conference is not to visit interesting places, to catch up with old friends, to party with colleagues (although much partying does occur), or even to listen to high-profile scientists lecture on their work. All these are important aspects of a successful conference, but its central function is to bring people together to discuss their own studies. Where this happens most is at the poster sessions — the great equalizer of any scientific conference..

Poster

GPC New Media Fellow Sarah Jose presents a poster at a conference

However lofty the professor or junior the student, with a poster everyone can present their work on an equal level, open to the criticism of all. They are the soul of any good conference, but they are the most difficult aspect to organize successfully. Ideally the posters should all be in one place rather than spread out over a number of rooms, to avoid some groups getting ignored. The posters need to be arranged close enough together that when the session is in full swing there is a throng and hubbub of chatter, but not so closely packed that posters are blocked by people reading the next one over. It is also vital that there is enough space to move freely between posters without having to squeeze past huddles of scientists talking with the presenters. Above all, posters must be available for long enough that conference-goers can read all that are relevant to them. Therefore poster rooms need to be open throughout the conference, not just during designated sessions, and all posters should be available for the whole conference, not taken down halfway through to make way for a second batch.

Posters provide some of the first opportunities that early-career scientists have to present their research. It is therefore always good to see conferences enhancing their status in some way. The simplest is the awarding of prizes for the ‘best’ posters, judged as much for the clarity of presentation as for the story being told. Some conferences have started to schedule ‘flash talks’, selecting presenters to give a short description of their work, and serving as an advert for their posters. This commonly takes the format of five-minute presentations with no more than three slides — but ‘slam’ sessions are also possible, where a single minute is allocated to each speaker. A variation of this occurred at the recent ASPB Plant Biology 2016 meeting in Austin, Texas: early-stage researchers were helped to video ‘elevator pitches’ about their work, which can now be seen on the Plantae YouTube channel. It is also encouraging to see that the New Phytologist Trust will again be holding a Next Generation Scientists symposium next year, following on from the successful inaugural meeting in 2014.

The planning, organization and execution of a scientific meeting requires as much skill, enthusiasm and innovation as any other part of the scientific endeavour. After all, a good conference brings scientists together to discuss ideas, initiate collaborations and forge friendships that can last for entire careers, and sometimes longer.

Feeding the world with virtual crops

By | Blog, GPC Community

This week’s blog comes from Rachel Shekar, the project manager for the “Crops in silico” project.

Researchers watch a field of soybean emerge, grow, and abruptly die in the span of one minute — on their computer screens. These virtual crops will help them understand how crops will respond to climate change – an ever-growing threat to worldwide food production – and could lead to overcoming its threat to global food security.

Food security

Image credit: Kate Holt. Used under license: CC BY 2.0.

It is estimated that, by 2050, food production will need to increase by 70% to meet the demands of a growing global population. According to the latest UN projections, the world’s population will rise from 6.8 billion today to 9.1 billion in 2050 – a third more mouths to feed than there are today. Nearly all of the population growth will occur in developing countries.

At the same time as demand for food is increasing, the world will also be facing fresh water scarcity and climate change.

Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency and severity of extreme weather events. Although projections vary, it is clear that crop yields will decrease as climate change increases. Furthermore, the countries that most need food – such as sub-Saharan Africa – are the very places that will be most severely affected by climate change. Growing water use and rising temperatures are expected to further increase water stress in many agricultural areas by 2025.

Soy field

Soy field. Image credit: Neil Palmer (CIAT). Used under license: CC BY-SA 2.0.

Can crop yields be increased in time?

The introduction of new crop varieties that produce higher and more stable yields in the face of drought, heat, diseases, and other stresses will allow farmers to grow crops that are adapted to climate change.

Plant models can be used to rapidly identify genes that will improve yields and utilize resources more efficiently, which will provide targets for developing productive varieties of food crops more quickly than ever before.

Because many traits, such as yield, are controlled by interactions between genetics, the environment, and the ecosystem, the most accurate results can be obtained by incorporating information across different biological scales—from molecular and cellular up to the organ, plant, and community levels.

Understanding the whole plant

Soy trials

Data for the system-level model was derived from soybean trials at University of Illinois South Farms. Image credit: Haley Ahlers.

The Crops in silico team at the University of Illinois and National Center for Supercomputing Applications is developing and linking models across different biological scales to more accurately simulate plant responses to a changing environment.

The team is developing models from the molecular to field, and root to leaf levels. Once the models are linked, an entire virtual crop canopy can be created and used to identify target genes for yield improvement under a range of environments. Other researchers can then use this information to develop crops that will thrive in tomorrow’s climate.

Crops in silico is currently focusing on soybean plants. The wealth of data from SoyFACE, an open-air experiment at the University of Illinois where soybean is grown in future climate conditions (e.g. elevated carbon dioxide, temperature, and drought), is facilitating model development and validation.

Soy render

Rendered plant- and canopy-level data from the system-level model. Image credit: Crops in silico.

Future work by Crops in silico will target staple food crops in developing countries including rice, legumes, and cassava.

Crops in silico aims to create an open-source teaching and training tool for students. A user-friendly web interface will allow non-modelers to visualize model outputs as easy-to-interpret graphs, tables, animated simulations of plant growth and ecosystem interactions.

Building a research community

Plants In Silico Meeting

Photograph from the Plants in silico Symposium & Workshop held in Urbana, Illinois in 2016. Image credit: Rachel Shekar (Crops in silico).

The success of this effort is dependent on a connected Crops in silico community that can take full advantage of advances in computational science, and our mechanistic understanding of plant processes and their responses to the environment. The first step in creating the community was taken this summer when a group of international scientists met at the first Plants in silico Symposium & Workshop in Illinois. Workshop participants identified specific challenges to integrative and multi-scale modeling in plants, and their solutions.

Together, this community will create the most complete models of staple food crops, to identify varieties that will ensure food security around the world in the face of climate change.


For more information on the Plants in silico project, read the recent paper in Plant, Cell and Environment (open access): Plants in silico: why, why now and what?—an integrative platform for plant systems biology research.

Plantwise – promoting and supporting plant health for the Sustainable Development Goals

By | Blog, Global Change, GPC Community
Andrea Powell

Andrea Powell, CABI

Promoting and supporting plant health will be an important part of how we achieve the United Nations’ Sustainable Development Goals (SDGs). Andrea Powell, Chief Information Officer of the Centre for Agriculture and Biosciences International (CABI) looks at how the CABI-led Plantwise programme is helping to make a difference.

By Andrea Powell

 

On 26th and 27th July 2016, CABI held its 19th Review Conference. This important milestone in the CABI calendar saw our 48 member countries come together to agree a new medium-term strategy. As always, plant health was a key focus to our discussions, cutting across many of CABI’s objectives. For CABI, with 100 years of experience working in plant health, it has become one of our most important issues, upon which our flagship food security program, Plantwise, has been built.

Plant health can, quite simply, change the lives and livelihoods of millions of people living in rural communities, like smallholder farmers. Human and animal health make headlines, while plant health often falls under the radar, yet, it is crucial to tackling serious global challenges like food security. Promoting and supporting plant health will be an important way to achieve the Sustainable Development Goals (SDGs).

Plant health and the SDGs

Take, for example, SDG 1, which calls for ‘no poverty’. The UN states that one in five people in developing regions still lives on less than $1.25 a day. We know that many of these people are smallholder farmers. By breaking down the barriers to accessing plant health knowledge, millions of people in rural communities can learn how to grow produce to sell to profitable domestic, regional and international markets.

Plantwise ReportSDG 2 focuses on achieving ‘zero hunger’. Almost one billion people go hungry and are left malnourished every day – and many are children. Subsistence farmers, who grow food for their families to eat, can be left with nothing when their crops fail. Access to plant health knowledge can help prevent devastating crop losses and put food on the table.

Interestingly, SDG 17 considers ‘partnerships for the goals’ and is critical to the way in which we can harness and share plant health knowledge more widely to help address issues like hunger and poverty. By themselves, individual organizations cannot easily resolve the complicated and interconnected challenges the world faces today. This is why partnership is at the heart of CABI’s flagship plant health programme: Plantwise.

What is Plantwise?

Plantwise Report 2015

Since its launch in 2011, the goal of Plantwise has been to deliver plant health knowledge to smallholder farmers, ensuring they lose less of what they grow. This, in turn, provides food for their families and improves living conditions in rural communities. Plantwise provides support to governments, helping to make national plant health systems more effective for the farmers who depend on them. Already, Plantwise has reached nearly five million farmers. With additional funding, and by developing new partnerships, we aim to bring relevant plant health information to 30 million farmers by 2020, safeguarding food security for generations to come.

Plantwise ‘plant clinics’ are an important part of the fight against crop losses. Established in much the same way as clinics for human health, farmers visit the clinics with samples of their sick crops. Plant doctors diagnose the problem, making science-based recommendations on ways to manage it. The clinics are owned and operated by over 200 national partner organizations in over 30 countries. At the end of 2015, nearly five thousand plant doctors had been trained.

Plantwise

A Plantwise plant clinic in action. Credit: Plantwise

Harnessing technology for plant health

The Plantwise Knowledge Bank reinforces the plant clinics. Available in over 80 languages, it is an online and offline gateway to plant health information, providing the plant doctors with actionable information. It also collects data about the farmers, their crops and plant health problems. This enables in-country partner organizations to monitor the quality of plant doctor recommendations; to identify new plant health problems – often emerging due to trade or climate change issues; and develop new best-practice guidelines for managing crop losses.

Plantwise

The first ever e-plant clinic, held in Embu Market, Kenya. Credit: Plantwise

The Plantwise flow of information improves knowledge and helps the users involved: farmers can receive crop management advice, and researchers and governments can access data from the field. With a new strategy for 2017–19 agreed, CABI will continue to focus on building strong plant health systems. We are certain that plant health is of central importance to achieving the SDGs and, together in partnership, we look forward to growing the Plantwise program and making a concrete difference to the lives of smallholder farmers.

“A few years ago, I would make ZMW 5000 per year. Last year I got 15 000. I have never missed any plant clinic session. I’ve been very committed, very faithful, because I have seen the benefits.”––Kenny Mwansa, Farmer, Rufunsa District, Zambia.

Take a look at Plantwise in action in Zambia (YouTube):

Plantwise in Zambia

Meet Linda, a Zambian plant doctor

Meet Kenny, a Zambian farmer

 

Learn more about Plantwise at www.plantwise.org.

Professor Stefan Jansson on what makes a GMO, and the Scandinavian Plant Physiology Society

By | Blog, Future Directions, GPC Community, Interviews, Scandinavian Plant Physiology Society

This week we speak to Professor Stefan Jansson, Umeå University, Sweden, who is the President of one of the Global Plant Council member organizations, the Scandinavian Plant Physiology Society (SPPS). He tells us more about his fascinating work, his prominent role in the GM debate, and his thoughts on the work of the SPPS and GPC, both now and in the future.

Stefan_Jansson

Could you tell us a little about your areas of research interest?

I have worked on (too) many things within plant science, but now I am focused on two subjects: “How do trees know that it is autumn?”, and “How can spruce needles stay green in the winter?” We use several approaches to answer these questions, including genetics, genomics, bioinformatics, biochemistry and biophysics.

 

Your ground-breaking work on CRISPR led to you being awarded the Forest Biotechnologist of the Year award by the Institute of Forest Biosciences. Could you tell us more about this work, and the role you have played in the GM debate?

In our work on photosynthetic light harvesting, we have generated and/or analyzed different lines lacking an important regulatory protein; PsbS. PsbS mutants resulting from treatment with radiation or chemical mutagens can be grown anywhere without restriction, but those that are genetically modified by the insertion of disrupting ‘T-DNA’ are, in reality, forbidden to be grown. For years, I, and many other scientists, have pointed out that it does not make sense for plants with the same properties to be treated so differently by legislators. In science we treat such plants as equivalents; when we publish our results we could be required to confirm that the correct gene was investigated by using an additional T-DNA gene knock-out line or an RNAi plant (RNA interference, where inserted RNA blocks the production of a particular protein), but in the legislation they and the ‘traditionally mutated’ plants are opposites.

This has been the situation for many years, but it has been impossible to change. To challenge this, we set up an experiment using a targeted gene-editing approach called CRISPR/Cas9 to make a deletion in the PsbS gene, which resulted in a plant with a non-functional PsbS gene but no residual T-DNA. We asked the Swedish competent authority if this would be treated as a GM plant or not, arguing that it is impossible to know if it is a ‘traditional’ deletion mutant or a gene-edited mutant. In the end, the authority said that, according to their interpretation of the law, this cannot be treated as a GMO.

If this interpretation is also used in other countries, plant breeders will have access to gene-editing techniques to aid them in their work to generate new varieties, which would otherwise not be a possibility. The reason we did this was to provide the authorities with a concrete case, and one which was not linked to a company or commercial crop but rather something that everyone would realize could only be important for basic science. Therefore most of the arguments that are used against GMOs could not be used, and this should be a step forward in the debate.

 

Check out Stefan’s fantastic TEDxUmeå talk to hear more on the GM debate:

spps_logoYou are the President of the Scandinavian Plant Physiology Society, one of the Global Plant Council member organizations. Could you briefly outline the work of the SPPS?

We support plant scientists – not only plant physiologists – in the Nordic countries, organize meetings, publish a journal (Physiologia Plantarum), etc.

 

What are the most important benefits that SPPS members receive?

This is an issue that we discuss a lot in the society right now. Only a limited fraction of Nordic plant scientists are members – obviously are the benefits not large enough – and this is something that we intend to change in the coming years. We think, for example, that we need to be a better platform for networking between researchers and research centers, and have a lot of ideas that we would like to implement.

 

How does the GPC benefit the SPPS?

Although there are country- and region-specific issues important for plant scientists, the biggest issues are global. The arguments why we need plant science are basically the same whether you are a plant scientist in Umeå or Ouagadougou, therefore we all benefit from a global plant organization.

 

What do you see as important roles for the future of the GPC, both for SPPS and the wider community?

This is quite clear to me: we will contribute to saving the planet.

 

What advice would you give to early career researchers in plant science?

Your curiosity is your biggest asset, so take good care of it.

 

Is there anything else you’d like to add?

The challenge for the GPC is clearly to get enough resources to be able to fulfil its very worthwhile ambitions. GPC has made a good start: the vision is clear and the roadmap is there, which are two prerequisites, but additional resources are needed to employ people to realize these ambitions, build upon current successes, and perform the important activities. It is easy to say that if we all contribute with a small fraction of our time that would be sufficient, but we all have may other obligations and commitments, and a few dedicated people are needed in all organizations.