Research shows that multi-species mixtures out-yielded perennial ryegrass monocultures receiving double the amount of fertiliser.The most productive swards were a combination of species from the three functional groups of grasses, legumes and herbs. With legume proportion between 30 and 70%, yields were better than the best monoculture.
Scientists have discovered how plants manage to live alongside each other in places that are dark and shady. Moderate shade or even the threat of shade – detected by phytochrome photoreceptors – causes plants to elongate to try to outgrow the competition.
Nitrogen is one the most essential nutrients for plants. Its availability in the soil plays a major role in plant growth and development, thereby affecting agricultural productivity. Scientists were now able to show, how plants adjust their root growth to varying sources of nitrogen. In a new study they give insights in the molecular pathways of roots adaptation.
Imagine working on a jigsaw puzzle with so many pieces that even the edges seem indistinguishable from others at the puzzle’s centre. The solution seems nearly impossible. And, to make matters worse, this puzzle is in a futuristic setting where the pieces are not only numerous, but ever-changing. In fact, you not only must solve the puzzle, but parse out how each piece brings the picture wholly into focus.
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the U.S. and elsewhere with ripple effects felt by economies worldwide. In a landmark study, scientists have published the most comprehensive genome information to date for all three species, marking a new era of scientific discovery toward potential solutions.
The evolution of novel features – traits such as wings or eyes – helps organisms make the most use of their environment and promotes increased diversification among species. Understanding the underlying genetic and developmental mechanisms involved in the origin of these traits is of great interest to evolutionary biologists.
All plants and animals respire, releasing energy from food. At the cellular level, this process occurs in the mitochondria. But there are differences at the molecular level between how plants and animals extract energy from food sources. Discovering those differences could help revolutionize agriculture.
A multidisciplinary, international team, has uncovered a new biochemical mechanism fundamental to plant life. Their research details the discovery of the enzymatic reaction involving carbohydrates present in plant cell walls, which are essential for their structure.
Researchers use a new method of in vivo biosensor technology. Almost all life on Earth, in particular our food and our health, depend on metabolism in plants. In order to understand how these metabolic processes function, researchers are studying key mechanisms in the regulation of energy metabolism.
After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought. The tissue succulence engineering method devised for this small flowering plant can be used in other plants to improve drought and salinity tolerance with the goal of moving this approach into food and bioenergy crops.