Researchers have shed light on the reproductive role of ‘dark matter’ DNA – non-coding DNA sequences that previously seemed to have no function.
Wheat, in its own right, is one of the most important foods in the world. It is a staple food for more than 2.5 billion people, it provides 20% of the protein consumed worldwide and, according to the FAO, supplies more calories than any other grain. Its long-term productivity, however, is threatened by rising temperatures, among other factors. Stress from heat, an increasing trend due to climate change, affects its performance, a fact that needs urgent solutions bearing in mind that, according to some estimates, the world’s population will reach 9 billion by the year 2050.
When we cut our fingers, blood rushes out of the wound to close it. However, the vegetable, we just wanted to slice and dice, would have reacted utterly different to this injury. Now scientists investigated how plant cells heal wounds. In their results the researchers discovered that the hormone Auxin and pressure changes are crucial to regeneration.
Citrus greening disease (Huanglongbing of HLB), transmitted by the Asian citrus psyllid, is currently the biggest threat to the citrus industry and is threat to many parts of the world. In Florida alone, citrus greening disease has accounted for losses of several billions of U.S. dollars. Despite HLB’s widespread prevalence, factors influencing the epidemic are poorly understood because most research has been conducted after the pathogen has been introduced.
Amongst the world’s most challenging problems is the need to feed an ever-growing global population sustainably. Securing the food supply is of paramount importance, and more attention must be given to the threat from fungal pathogens competing with us for our own crops.
Producing fewer sperm cells can be advantageous in self-fertilizing plants. An international study has identified a gene in the model plant Arabidopsis that reduces the number of pollen. In addition to supporting the evolutionary theory, these findings could help to optimize plant breeding and domestication in agriculture.
A team of scientists has developed a way to potentially thwart the spread of a disease-causing bacterium that harms more than 100 plant species worldwide, an advance that could save the nursery industry billions a year.
Some plants, like soybean, are known to possess an innate defense machinery that helps them develop resistance against insects trying to feed on them. However, exactly how these plants recognize signals from insects has been unknown until now. Scientists uncover how oral secretions of the cotton leaf worm trigger defense responses in a plant.
As a plant grows, it moves cellular material from its version of manufacturing sites to the cell wall construction zone. Transporter proteins, called motor proteins, are thought to move these cell wall cargo via a complex highway system made up of microtubule tracks. The position of these tracks must be stabilized so that cargo are delivered to the correct locations.
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth. Although this has long been common knowledge, scientists have only recently described the mechanism in detail. With biotechnology, this knowledge could now help make agriculture more sustainable.