All plants and animals respire, releasing energy from food. At the cellular level, this process occurs in the mitochondria. But there are differences at the molecular level between how plants and animals extract energy from food sources. Discovering those differences could help revolutionize agriculture.
A team of researchers has discovered that strigolactones, a class of novel plant hormones, mediate the fine-tuning of the production plant defensive substances in the stem of plants of the wild tobacco species Nicotiana attenuata.
A multidisciplinary, international team, has uncovered a new biochemical mechanism fundamental to plant life. Their research details the discovery of the enzymatic reaction involving carbohydrates present in plant cell walls, which are essential for their structure.
A new collaborative study describes a promising strategy to improve the nutritional benefits of crops. The work proposes the controlled transformation of chloroplasts (organelles that conduct the photosynthesis in leaves) into chromoplasts (organelles specialized in producing and storing large amounts of carotenoids). Free of substances harmful to the environment, this technology has been patented and opens new perspectives for the nutritional improvement (biofortification) of crops and for the sustainable production of carotenoids of interest to the cosmetic, pharmaceutical and food industries.
Researchers have discovered a new role for a well-known plant molecule, providing the first clear example of ACC acting as a likely plant hormone. Researchers show that ACC has a critical role in pollination and seed production by activating proteins similar to those in human and animal nervous systems. Findings could change textbooks and open the door for research to improve plant health and crop yield.
In recent years, the number of people affected by coeliac disease, wheat allergy or gluten or wheat sensitivity has risen sharply. But why is this the case? Could it be that modern wheat varieties contain more immunoreactive protein than in the past? Results from a new study are helping to answer this question.
An international team has decoded the full genome for the black mustard plant—research that will advance breeding of oilseed mustard crops and provide a foundation for improved breeding of wheat, canola and lentils.
Researchers use a new method of in vivo biosensor technology. Almost all life on Earth, in particular our food and our health, depend on metabolism in plants. In order to understand how these metabolic processes function, researchers are studying key mechanisms in the regulation of energy metabolism.
Bacterial road map offers new targets for Huanglongbing disease treatments. Scientists are closer to gaining the upper hand on a disease that has wiped out citrus orchards across the globe. New models of the bacterium linked to the disease reveal control methods that were previously unavailable.
Without sustained investment in plant science, the necessary research to generate innovative discoveries that solve these urgent problems is at risk. Recently, PSRN released its Plant Science Decadal Vision 2020-2030: Reimagining the Potential of Plants for a Healthy and Sustainable Future, a report that outlines bold, innovative solutions to guide investments and research in plant science over the next 10 years.