With land clearance, bushfires, weeds and climate change, small pockets of native vegetation are important for future plant and animal conservation – but do plants in small reserves struggle with reduced habitat for both plants and their pollinators?
An international team of scientists has created a tool that can aid in increasing climate awareness and climate action globally by highlighting messaging themes shown to be effective through experimental research.
A research team has tested six psychological interventions to combat climate misinformation. It shows how difficult it is to combat these messages, which are resistant to scientific information.
Satellite data reveals a significant cooling impact of vegetation on land surface temperature in the Arabian Peninsula. The study underscores the potential of greening dry areas to mitigate heat stress. The balance between increased evapotranspiration and reduced albedo determines outcomes, emphasizing the need for sustainable water management in climate change adaptation.
Plants avoid mutational damage buildup by leveraging randomness in a process called segregation. Unlike passing on the same mutation to all offspring, plants distribute inherited damage randomly, with some offspring inheriting more mutations than others. This segregation process, faster in plants than in humans, holds agricultural promise. Understanding how plants handle mutational variations in their DNA could aid crop breeders in introducing beneficial mutations for enhanced yield. The study’s findings advance knowledge crucial for crop breeding and yield enhancement.
New research could help breed plants that are more productive as days grow shorter. The research found that when days are shorter, plants have less time to photosynthesize, so they need to be more efficient with the sunlight they do receive. Plants store more sugar as starch during the day so that they have energy to use during the longer night. These findings could help to develop new crop varieties that can grow in a wider range of climates.
Sphagnum divinum, a resilient type of peat moss, is actively evolving in response to hot, dry conditions, defying climate threats. Researchers developed a database with S. divinum’s proteins and a method to determine their functions, shedding light on its adaptive mechanisms. As environmental stressors deplete peatland carbon reserves, understanding genetic resilience becomes crucial. Using high-performance computing and AI, the team predicted structures for S. divinum’s 25,134 proteins, revealing insights into their functions. The findings advance climate resilience understanding and support future research on Sphagnum moss compounds.
A genetic breakthrough unveils the high-iron mutations in peas, presenting opportunities for fortified vegetables and cereals. This discovery, based on a newly mapped pea-genome, could guide gene-editing strategies to enhance iron content in various crops, addressing global anaemia concerns, especially among women. The findings illuminate iron homeostasis in plants, offering prospects for biofortification.
As climate change intensifies, societal and individual struggles to adapt become more apparent. To explore cultural adaptation, researchers conducted the first study of its kind. Analyzing U.S. crop data over 14 years, they applied the science of cultural evolution. Their findings reveal farmers adapting to climate change in some regions, while in others, crops are increasingly mismatched. This first cultural approach marks a milestone in refining climate adaptation strategies.
New research reveals that deforestation in the Amazon not only warms immediate surroundings but also impacts areas up to 100 kilometers away. Analyzing data from 2001 to 2020, the study links regional forest loss to a significant temperature rise—4.4 °C in areas with both local and regional deforestation. The findings emphasize the critical importance of understanding how Amazon deforestation contributes to climate change and highlight the potential benefits of reducing deforestation for local, regional, and national scales.