Category

Blog

The Secrets of Seagrass

By | Blog, Future Directions
Zosteramarina

Zostera marina. Public domain, via Wikimedia Commons.

It’s the ancient story of plant evolution: photosynthetic algae moved to damp places on land, eventually evolving more complex architecture, and spreading across almost all terrestrial habitats. To cope with the drier conditions, plants developed roots to absorb water, and vascular tissue to transport it; a waxy cuticle coating their surfaces to prevent evaporation; and microscopic pores called stomata that open to allow carbon dioxide to diffuse in for photosynthesis but close to prevent excessive water loss.

How, then, does eelgrass (Zostera marina) fit in to this tale? It’s a monocot descended from the flowering plants, but it has turned its back on dry land and returned to the sea; a rare feat that only appears to have happened on three occasions. The recent sequencing of the eelgrass genome has revealed several interesting insights into the dramatic genetic changes that have allowed it to adapt to what lead author Professor Jeanine Olsen described as, “arguably the most extreme adaptation a terrestrial (and even a freshwater) species can undergo.”

Sayonara to stomata

If you live in the sea, conserving water isn’t your main concern. Eelgrass was known to lack stomata, but genetic comparisons to other species, including its freshwater relative Spirodela polyrhiza, revealed the first surprise of the study: eelgrass has lost not only its stomata but also the genes involved in their development and patterning. “The genes have just gone, so there’s no way back to land for seagrass,” said Olsen.

A difference in defense

When angiosperms are attacked by herbivores or pathogens, their defense response typically involves the release of volatile secondary metabolites through their stomata. How can eelgrass release these compounds without stomata? The answer is: it doesn’t. The genome study found that eelgrass is missing crucial genes involved in making ethylene (an important hormone release in times of stress), as well as those responsible for producing non-metabolic terpenoids, which act to repel pests.

Selective pressures of the marine environment differ greatly from those of terrestrial habitats, so different pathways may be involved. Second, eelgrass has a wide repertoire of pathogen resistance genes, which suggests that it is exposed to a very different set of pathogens that may not respond to typical immune responses. Third, volatile secondary metabolites are often involved in attracting pollinators; this is not believed to be necessary in eelgrass, where submarine pollination occurs using the water itself.

Zostera marina. Public domain, CC0 1.0.

Zostera marina – National Museum of Nature and Science, Tokyo. Public domain, CC0 1.0, via WikiMedia Commons.

Changing the cell wall

Eelgrass is subject to extremely salty conditions, and it’s had to adapt to osmotic stress. Unlike typical plant cell walls, eelgrass has engineered its cell wall matrix to retain water in the cell wall, even during low tide. This involves depositing sulfated polysaccharides and low methylated pectins in the cell wall matrix, but until its genome was sequenced no-one knew exactly how. It turns out that eelgrass has rearranged its metabolic pathways: “They have re-engineered themselves,” Olsen explains.

Living with a lack of light

Some species of Zostera can grow in water 50m deep, where light levels are reduced and shifted into a narrow wavelength range; ultraviolet (UV), red and far-red light have particularly low penetration after the first 1–2m of seawater. In a classic eelgrass ‘use it or lose it’ response, it has lost the UVR8 gene, which is responsible for sensing and responding to UV damage, as well as the phytochromes associated with red and far-red receptors. It does, however, retain the photosynthetic machinery, including photosystems I and II.

Unravelling angiosperm evolution

The recent eelgrass publication has revealed how this plant has either lost or adapted typical angiosperm traits to suit its needs, by ditching its stomata, volatile secondary metabolites and certain light sensing genes, or by altering the structure and function of the cell wall. It also developed adaptations that enable gas exchange, help pollen stick to submerged stigmas, and promote nutrient uptake.

Could these adaptations be useful in crop breeding? While a lack of defense compounds would probably be a step backwards, it would be extremely useful to understand how eelgrass copes with biotic stresses without them. Removing light receptors would also be problematic, but could eelgrass help us to develop crops that can grow in shaded conditions, perhaps in intercropping systems? What can we learn from eelgrass’ nutrient uptake and salt-tolerant adaptations?

Now that we have seen some of the secrets of eelgrass, how can we best make use of them?

 

Read the paper: The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea (Open Access)

Read the editorial: Genomics: From sea to sea (paywall)

Read the press release: Genome of the flowering plant that returned to the sea

 

Plant Artificial Chromosome Technology

By | Blog, Future Directions

Established GM technologies are far from perfect

The first genetically modified (GM) crops were approved for commercial use in 1994, and GM crops are now grown on over 180 million hectares across 29 countries. The most used forms of genetic modification are systems that result in herbicide resistance or expression of the Bt toxin in maize and cotton to provide protection against pests such as the European corn borer. These systems both require few novel genes to be introduced to the plant, and allow more efficient use of herbicides and pesticides, both of which are harmful to the environment and human health. Current systems of genetic modification usually involve

Agrobacterium tumefaciens is used to genetically engineer plants in the lab. In nature this bacteria uses its ability to alter plant DNA to cause tumours.

Agrobacterium tumefaciens is used to genetically engineer plants in the lab. In nature this bacteria uses its ability to alter plant DNA to cause tumours. Image by Jacinta Lluch Valero used under Creative Commons 2.0.

the use of Agrobacterium vectors, direct transformation by DNA uptake into the plant protoplast, or bombardment with gold particles covered in DNA. However, current systems of transformation are far from perfect. Many beneficial traits such as disease resistance require stacking of multiple genes, something that is difficult with current transformation systems. Furthermore, it is essential that transgenes are positioned correctly within the host genome. Current systems of genetic modification can insert genes into the ‘wrong’ place, disrupting function of endogenous genes or having implications for down or upstream processes. An additional problem is that transfer of transgenes from one line to another requires several generations of backcrossing. However, the past two decades have seen great developments in microbiology. Many new tools and resources are now available that could greatly enhance the biotechnology of the future.

 

New technologies

Many new and emerging technologies are now available that could transform plant genetic engineering. For example, high throughput sequencing and the wide availability of bioinformatics tools now make identifying target genes and traits easier than ever. Technologies such as site-specific recombination (SSR) and genome editing allow specific regions of the genome to be precisely targeted in order to add or remove genes. Artificial chromosome technology is also part of this emerging group that could be of benefit to plant science. Synthetic chromosomes have already been used in yeast, and widely studied in mammalian systems due to their potential use in gene therapy. Although there have so far been no definitive examples in plants, work has been done in maize that shows the potential of the technology for use in GM crops.

 

Building an artificial chromosome

A minichromosomes is a small, synthetic chromosome with no genes of its own. It can be programmed to express any desirable DNA sequence that could encode for one, or a number, of genes. An ideal minichromosome would be small and only contain essential elements such as a centromere, telomeres and origin of replication. Once introduced into the plant the minichromosomes should be designed such that interference with host growth and development is minimal. A key requirement is that the chromosome is stable during both meiosis and mitosis. This would ensure introduced genes do not become disrupted or mutated during cell division and reproduction. Gene expression would therefore remain the same for many generations. Finally, the DNA sequence on the minichromosomes could be designed such that it is amenable to SSR or gene editing systems. This would allow re-design and addition of new traits further down the line.

 

Potential advantages of artificial chromosomes

Plant artificial chromosomes (PACs) have many advantages over traditional transformation systems. For example, to confer complex traits such as disease resistance and tolerance to abiotic stresses such as heat and drought, multiple genes are required. This is not easy with current methods of modification.

PACs could offer a new way to introduce beneficial traits to our crops plants and feed a growing population.

PACs could offer a new way to introduce beneficial traits to our crops plants and feed a growing population.Image by Seattle.Romer. Used under Creative Commons 2.0.

However, PACs allow an almost unlimited number of genes to be integrated into the host system. A further possibility that comes from being able to add multiple genes is the addition of new metabolic pathways into the plant. This could allow us to change the nutrients produced by a plant to benefit our diets. Additionally, in a contained environment, plants could be used as a cheap, sustainable way to produce pharmaceuticals. A second major benefit of PACs is that they avoid linkage drag. This is when a desirable gene is closely linked to a deleterious gene that acts to reduce plant fitness. Where this linkage is very tight even repeated backcrossing cannot separate out the genes. Design of new DNA sequences completely avoids this problem, and could allow us to select out detrimental traits from out crop plants.

 

Regulations for novel biotechnology

Emerging technologies pose new questions to policy makers regarding GM regulation. For example, the use of genome editing, whereby specific sites in the genome are targeted and modified, produces an end product with a phenotype almost identical to one that could be achieved through conventional breeding. This sets genome-edited crops apart from other transgene-containing GM material. For this reason many now argue that genome-edited crops ought not to come under current GM regulations. Much of this argument centres on whether or not to regulate the scientific technique used to produce a crop, or to regulate the end product in the field. For more information on genome editing including current regulations and consensus, see the links at the end of this article.

 

PACs pose a different set of problems entirely. Minichromosomes would be foreign bodies in the plant, and gene stacking within these introduces even more foreign genes than is possible with current technologies. This would require extensive assessment of both environmental and health effects prior to commercialization. Currently regulatory approval costs around $1-15 million per insertion into the genome. These heavy charges may discourage the further development of minichromosomes technology. However, with PACs it is possible that a particular package of genes could be assessed once, and then transferred into numerous cultivars. This would eliminate the requirement to individually engineer and test every cultivar, so perhaps saving time and money in the long term.

 

More information on genome editing:

Sense about science genome editing Q & A

The regulatory status of genome-edited crops

The Guardian article on genome editing regulation

A proposed regulatory network for genome edited crops in Nature

A recent workshop on the CRISPR-CAS system of genome editing was held in September 2015 by GARNet and OpenPlant at the John Innes Centre in Norwich, UK. You can read the full meeting report here.

 

 

 

 

 

 

 

 

 

 

 

Integrated Pest Management Systems

By | Blog, Future Directions

Herbivorous pests can devastate crops, with huge economic and social impacts that threaten global food security. In 2011 scientists warned that biological threats, including pests and pathogens, account for a 40% loss in global production and have the potential for even higher losses in the future.

A farmer sprays pesticides on her crop

A farmer sprays pesticides on her crop. From IFPRI – IMAGES. Used under Creative Commons 2.0.

In the 1950s and 1960s huge amounts of pesticides were being used in agriculture, with negative effects on both humans and ecology. Pests and pathogens were developing resistance to pesticides, and to counteract this chemical companies were developing ever stronger, more expensive chemicals.

Perry Adkisson and Ray Smith, both entomologists, noted the harmful effects on the economy and environment of the overuse of synthetic pesticides. Working together they identified practical approaches to pest control that minimized pesticide use. They developed and popularized integrated pest management (IPM) systems, for which they won the World Food prize in 1997.

 

“Integrated Pest Management (IPM) means the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimize risks to human health and the environment. IPM emphasizes the growth of a healthy crop with the least possible disruption to agro-ecosystems and encourages natural pest control mechanisms.” FAO definition

 

What is IPM?

IPM is an approach to crop production that considers the whole ecosystem, integrating a number of management techniques, rather than focusing all resources on a single practice such as pesticide use. Adkisson and Smith identified a number of principals around which successful IPM should be based:

Firstly, crop varieties should be selected that are appropriate to the culture and local environment. This would ensure the crop species is already adapted to local conditions, and may have some defense mechanisms to protect itself from biotic and abiotic stresses.

Secondly, IPM is based around pest control rather than complete eradication. Therefore, maximum tolerable levels of the pest that still enable good crop yields should be identified and the pests should be allowed to survive at this threshold level, although allowing a number of pests to exist within the crop requires continual monitoring. Good knowledge of pest behavior and lifecycle enables the prediction of where more or less controls are required.

Finally, when choosing a method of control, both mechanical methods, such as traps or barriers, or appropriate biological control are preferential. However, pesticides can be integrated into the plan if necessary, providing use is responsible and not in excess of requirements. Some really cool practices are now emerging that can be used as part of an IPM system around the world.

 

Enhancing biological control

Simply reducing pesticide use can actually lead to increased yields, as farmers in Vietnam discovered when scientists convinced them to try it for themselves. Their nemesis, the brown planthopper (Nilaparvata lugens), is increasingly resistant to insecticides, with devastating outbreaks becoming more common. Rice farmers found that by stopping their typical regular insecticide sprays, the planthopper’s natural predators such as frogs, spiders, wasps and dragonflies were able to survive and remove the pests, giving farmers a 10% increase in harvest income. This improved biological control is a key component of IPM.

Brown Planthopper

The Brown Planthopper (Nilaparvata lumens) on a rice stem. From IRRI photos. Used under Creative Commons 2.0.

 

Push-pull technology

Push-pull agriculture has been very successful in Kenya, where stemborer moths can cause vast yield losses in maize with estimated economic impacts of up to US$ 40.8 million per year. Push-pull technology uses selected species as intercrops between the main crops of interest. Intercrops work in two ways, by pushing pests away from the economically valuable crop, and pulling them towards a less valuable intercrop. The stemborer moth push-pull system uses Desmodium (Desmodium uncinatum) to repel stemborer moths. Desmodium species are small flowering plants that produce secondary metabolites that repel insects. Moths are then attracted to the surrounding napier grass instead.

Aside from controlling the stemborer moth, this system has a number of additional benefits. Desmodium suppresses the growth of Striga grass (a devastating weed that you can read about here) via a number of mechanisms, primarily through interfering with root growth. Additionally, the intercrop species can be used for animal fodder and improve soil fertility. The multiple benefits and success of this system has meant push pull has now been adopted by over 80,000 small-holdings in Kenya and is being rolled out to Uganda, Tanzania and Ethiopia.

 

Stem borer larva feeding on a maize stem.

Stem borer larva feeding on a maize stem. From International Institute of Tropical Agriculture. Used under Creative Commons 2.0.

Abrasive weeding

Abrasive weeding is a relatively new technique that involves firing air-propelled grit at a crop to physically kill any weeds growing between crop rows. One issue with this method is that it indiscriminately damages the stem and leaf tissue of both crops and weeds, but grit applicator nozzles are available to more directly target the base of the stem to minimize collateral damage. A recent study found abrasive weed control reduced weed density by up to 80% in tomato and pepper fields, with 33-44% increases in yield.

Maize cob or walnut shells are currently the most frequently used grits, but the technique offers the exciting possibility of combining fertilization and weed control in one step, which could reduce time and cost to the farmer. For example, soybean meal is able to destroy plant tissues when fired from the gun, and has high nitrogen content that is released slowly into the soil over a period of at least three months, making it an ideal source of fertilizer.

 

Flowers of the Global Plant Council

By | Blog, GPC Community

A while ago we published a blog post about the sequencing of the Bauhinia genome. Bauhinia x blakeana is the national flower of Hong Kong, so naturally this sparked our interest in the global importance of flowers as national symbols, such as the English rose. Here we list just a few of the more interesting and unusual plants that are the national symbols of countries hosting GPC member organizations.

India       Indian Society for Plant Physiology

Nelumbo nucifera

The Lotus Plant

The Lotus Plant (Nelumbo nucifera) is an aquatic plant in the Nelumbonaceae family, and is the national flower of India and Vietnam. Image by alterna used under Creative Commons 2.0.

The lotus plant (Nelumbo nucifera) is considered sacred in the Buddhist and Hindu religions, and been used for over 7000 years in Asia as a source of food, herbal remedy and fibers for clothing. In 2013 its genome was sequenced, allowing its phylogenetic history and adaptations for the aquatic environment to be more fully understood.  For example, the plant has a number of genes enabling its adaptation to the nutrient poor soils in waterways, altering its novel root growth, iron regulation and phosphate starvation.

Researchers at the University of Adelaide, Australia, showed that the lotus actually has the ability to regulate the temperature of its flowers, maintaining them between 30 and 36 °C even when air temperature dropped below this. Quite how or why it does this is still unknown, but warmer flowers could play a role in attracting cold-blooded insects and increasing their activity once on the flowers to enhance pollination. An alternative explanation could be that warmer temperatures are required for pollen production.

Another fantastic fact about the lotus is seed viability. A 1300 year old lotus fruit found in a dry lakebed in China was successfully germinated, providing an insight into the aging process of fruits and other organisms

Australia      Australian Society of Plant Scientists

Acacia pycnantha

Acacia

The golden wattle (Acacia pycnantha) is a member of the Fabaceae family. The plant is a small tree that can grow up to 12 meters high! In Australia the 1st September is National Wattle Day. Image by Sydney Oats used under Creative Commons 2.0.

The Australian national flower is the Acacia pycnantha, or wattle, first described in 1942. Its name comes from the Greek pyknos (dense) and anthos (flowers) describing the dense groups of flowers that form on the tree. The wattle is an important source of tannins, and as such has been introduced to parts of southern Europe such as Italy and Portugal in addition to India and New Zealand. The wattle is also found in South Africa where it has now become an invasive pest, and various methods of biological control such as gall forming wasps (Trichilogaster signiventris) are being used to control populations.

Galls on Acacia

Galls on a wattle tree from T. signiventris. Eggs are laid by the wasp in the buds of flower heads and the hatched larvae induce gall formation which prevents flower development. This in turn prevents pollination and continued propagation of the Wattle population. Image by Sydney Oats used under Creative Commons 2.0.

Japan      The Japanese Society of Plant Physiologists

Yellow Chrysanthemum

Yellow Chrysanthemum

The yellow Chrysanthemum is a member of the Asteraceae family. Species of the Chrysanthemum enus are popular ornamental plants, and as such many hybrids and thousands of cultivars in a variety of colors and shapes can be found. Image by Joe deSousa used under Creative Commons 1.0.

Although cherry blossom is often the flower most associated with Japan, yellow Chrysanthemum flowers are equally as important. The flower is used as the Imperial Seal of Japan and on the cover of Japanese passports. Species of the genus Chrysanthemum are members of the Asteraceae (daisy) family.

Two species of the Chrysanthemum genus, C. cinerariifolium and C. coccineum, synthesize pyrethrum compounds, which attack insect nervous systems. As such these species make good companion plants in the field, repelling insects from economically valuable neighboring plants that do not have their own defense mechanisms. The naturally produced toxins are widely used in organic farming, and many synthetic versions are also available commercially.

South Africa      African Crop Science Society

Protea cynaroides

King Protea

The king protea (Protea cynaroides)  is a member of the Proteaceae family and the national flower of South Africa. The South African cricket team has the nickname the Proteas, after the flower. Image by Virginia Manso, used under Creative Commonds 2.0.

The king protea (Protea cynaroides) can grow up to 2 meters in height and comes in several colors and varieties. The plant grows in harsh, dry regions prone to wildfire, and as such has a number of adaptations for the environment. For example, a long tap-root is used for accessing deep water, and tough leathery leaves are resilient to both biotic and abiotic stress. The protea has a thick underground stem with many dormant buds. After a wildfire these dormant buds can become active, forming new stems allowing the plant to survive!

The king protea is only one species within the large Proteaceae family, 120 species of which are now endangered listed on the IUCN Red List of threatened species. The Protea Atlas Project aims to map the geographical location of proteas through Southern Africa in order to help preserve the family. In addition to protea, Southern Africa is home to around 24 000 plant taxa, 80% of which occur no where else in the world. A wider objective of the Protea Atlas Project is to map species-richness patterns in Southern Africa. The distribution of Protea plants within the region largely seems to match the species-richness patterns of other plant species, and therefore proteas are being used as surrogates for plant diversity. Find out more about the project and get involved here.

Germany and Estonia      EUCARPIA, EPSO, FESPB, SPPS

Centaurea cyanus

Cornflower

The cornflower (Centaurea cyanus) is a member of the Asteraceae family, like the Chrysanthemum. Image by Anita used under Creative Commons 2.0.

We have a large number of European and Scandinavian member groups, and choosing one flower to represent all of those was a challenge. However, the humble Cornflower seemed an appropriate choice to represent our European societies. This member of the daisy family is not only the national flower of Germany and Estonia, but has a place in many Scandinavian cultures being the symbol for a number of political parties in Finland and Sweden.

In the past this beautiful flower was regarded as a weed, but now due to intensive agricultural practices has become endangered. Cornflowers have many uses in addition to being an ornamental plant. The plant is used in many blends of herbal tea, flowers are edible in salads, and the blue coloring can be used as a clothes dye.

Canada           Canadian Society of Plant Biologists

Acer 

Although not technically a flower, the leaf of the maple tree  is such an iconic symbol on the Canadian flag we just had to include it (we are the Global Plant Council after all). There are many species of maple tree in the genus Acer, which can be distinguished from other genus of trees by their distinctive leaf shape. The most important species of maple in Canada is probably Acer saccharum, the sugar maple. The sap of this species is the major source of maple syrup, and its hard wood is popular for use in flooring and furniture.

Maple

Acer saccharum, the sugar maple, in Autumn. Image by Mark K. used under Creative Commons 2.0.

The sugar maple grows throughout the USA and Canada, favoring cooler climates and is a very shade tolerant species.  Despite this, the sugar maple is now in decline in many regions. It is highly susceptible to increased levels of air pollution and changes to salt levels. As such the species is now being replaced in many regions by the hardier Norway Maple.

Argentina                  Argentinian Society of Plant Physiology

Erythrina crista-galli 

E. crista-galli, the cockspur coral tree, is the national tree in Argentina. Also known in Argentina as the ceibo, the bright red flower of this tree is also the national flower of Argentina and Uruguay.

Cockspur

The bright red flowers of E.crista-galli are the national flowers of Argentina and Uruguay. Image by Gabriella F.Ruellan used under Creative Commons 2.0.

The small tree is a legume from the family Fabaceae. Characteristically of species from this family, the fruit of the cockspur coral tree are dry pods, and the roots have nodules containing nitrogen fixing bacteria making them important for increasing the available nitrogen in the soil. Although native to South America, the tree is also naturalized in Australia, where it is becoming an emerging environmental weed. The tree is invading waterways and wetlands displacing native species, and its spread is now being controlled in New South Wales.

If your country has a particularly interesting national flower that we have missed let us know! Perhaps we can include it in a future blog post.

Connecting Plant Science Researchers, Entrepreneurs and Industry Professionals

By | Blog, Canadian Society of Plant Biologists, Scientific Meetings
From Lab Bench to Boardroom

From Lab Bench to Boardroom workshop at Botany 2015

This blog post was written by Amanda Gregoris and R. Glen Uhrig who organized a workshop entitled “Lab Bench to Boardroom” at the Botany 2015 meeting in Edmonton, Alberta, Canada.

Our motivation behind holding this workshop was to engage graduate students and post-doctoral fellows to consider the science behind biotechnology. We designed this workshop to be an opportunity to expose students and post-doctoral fellows to how industry experts and entrepreneurs develop ideas, and how they refine those ideas to make them attractive business opportunities for investors. We created an environment where students and post-doctoral fellows could ‘pitch’ their own plant science business ideas to a panel of industry experts. Through cooperative idea development with the panel and audience members, presenters were able to learn how to evolve their ideas, as well as how their peers viewed their proposed ideas.

Workshops such as Lab Bench to Boardroom are of central importance given the limited availability of academic positions. In light of this fact, students and post-doctoral fellows alike need to consider career options outside of academia prior to completion of their degrees, contracts or fellowships. It is imperative that early career researchers invest time to maximize long-term career outcomes. Workshops like ours and others assist in this by developing a thorough understanding of the non-academic opportunities available.

If you are an early career researcher looking to move away from academia, some industry positions for graduates and post-doctoral fellows may include:

  • research and development,
  • quality control,
  • marketing,
  • market research analyst,
  • business development manager,
  • competitive intelligence analyst,
  • product manager, and
  • management consulting.

Notice that these opportunities are not only based at the lab bench, but can be in more managerial or consulting positions. Your experiences as a researcher have given you highly valued skills, so don’t limit your options! Of course, industry is not the only option, and other opportunities may include working in a government lab, public policy, science writing, herbarium curation or patent agent.

The question of whether enough is being done to inform graduate students and post-doctoral fellows of alternative, non-academic career paths is one often asked, and is one that varies by institution. In our experience, universities have taken a largely standard approach, offering lectures by professionals from industry, as well as informal social gatherings aimed at connecting students to industry. Although these are good opportunities, they represent just the tip of the iceberg in terms of what could be done to inspire entrepreneurship amongst the upcoming generation of plant scientists, and better assist them with the transition from an academic focus to an industry focus.

Workshop concepts similar to Lab Bench to Boardroom could be developed at the departmental level, or by university career centers, to allow graduate students and post-doctoral fellows to gain an elevated understanding of non-academic career opportunities. Some universities have made great strides in this area, creating internship resources for current graduate students in the areas of biotechnology and public policy. Along these lines, university career centers will usually have databases of current job postings that can assist students in the search for life after grad school.

In the end, it is imperative that universities, governments and industry continue to work to develop strategies that assist graduate students and post-doctoral fellows in the transition from academics to successful non-academic careers. This can be accomplished either individually, or through partnerships between these groups. We believe that developing these strategies is undoubtedly essential to the sustainable development of new ideas and technologies in the plant sciences that will be required to address the current and future needs of society.

 

Amanda Gregoris is a Ph.D. candidate in the Department of Biological Sciences at the University of Alberta, Canada and Dr. R. Glen Uhrig is a post-doctoral fellow at the ETH Zurich, Switzerland. Both are members of the Canadian Society of Plant Biologists

Glen Uhrig

Glen Uhrig

Amanda Gregoris

Amanda Gregoris

Creating stress resilient agricultural systems: Video interviews

By | Blog, Scientific Meetings, SEB

The global population is projected to reach 9.6 billion by 2050, and to accommodate this, crop production must increase by 60% in the next 35 years. Furthermore, our global climate is rapidly changing, putting our cropping systems under more strain than ever before. Agriculture will need to adapt to accommodate more extreme weather events and changing conditions that may mean increased instance of drought, heatwaves or flooding. The Global Plant Council Stress Resilience initiative, was created to address these issues.

Back in October the Global Plant Council, in collaboration with the Society for Experimental Biology brought together experts from around the world at a Stress Resilience Forum to identify gaps in current research, and decide how best the plant science community can move forwards in terms of developing more resilient agricultural systems. We interviewed a number of researchers throughout the meeting, asking about their current work and priorities for the future.  Watch the best bits in the video below:

New Year, New Executive Board

By | Blog, Future Directions, GPC Community

Happy New Year!

Although they’ve actually been in post since our Annual General Meeting (AGM) in October 2015, I thought I’d take this opportunity to introduce you to our new(ish!) Executive Board; the elected committee of plant science experts from around who help Ruth and myself, and Bill our President, to direct and drive the GPC’s activities and initiatives.

Barry-PogsonBarry Pogson – Chair

Aussie Barry is stepping into the (very large!) shoes of our outgoing Chair, Willi Gruissem. Barry is no stranger to the GPC, having been a GPC Member Organization representative of the Australian Society of Plant Scientists since the GPC’s inception, and being the lead on our Biofortification initiative.

In the lab, based at the Australian National University in Canberra, Barry explores the signaling pathways between chloroplasts and nuclei, particularly investigating how these can impact plants’ tolerance to drought, and carotenoid synthesis and accumulation. His work has important implications for plant biology as a whole, but also for human nutrition, particularly in the biofortification of crops as a means to reduce micronutrient deficiencies.

Barry is Chair of the Golden Rice Technical Advisory Committee and has won numerous awards for his research, teaching and supervision excellence. You can read more about Barry on the GPC website.

Ariel-Orellana-200x300Ariel Orellana – Vice Chair

Ariel replaces outgoing Vice-Chair Henry Nguyen. A Professor of Plant Biotechnology at the Universidad Andrés Bello in Santiago, Chile, Ariel has also been involved with the GPC for a number of years as a representative of Chile’s National Network of Plant Biologists, and we look forward to continuing to work with him as a key point of contact in South America.

A highly decorated scientist with many awards, titles, and attributions to his name, Ariel’s research interests are in plant cell wall polysaccharide biosynthesis in the Golgi, particularly looking at the contribution of nucleotide sugar transporters, and he also uses genomics as a tool for the marker-assisted breeding of fruit.

Read more about Ariel on the GPC website.

VickyVicky Buchanan-Wollaston – Treasurer

Vicky joins the GPC Executive Board as our new Treasurer, taking over control of the purse-strings from Brazil’s Gustavo Habermann.

Vicky is Emeritus Professor of Plant Sciences at the University of Warwick, UK, where her research interests are focused on plant senescence, using both Arabidopsis and vegetable Brassicas to carry out functional analysis of leaf senescence-regulating genes. She is a GPC Member Organization representative for the Society for Experimental Biology, and with Professor Jim Beynon, leads the GPC’s initiative on Stress Resilience. Read more about Vicky here.

Carl_2014Carl Douglas – Board Member

Now joining us as Board Member – together with Yusuke Saijo (below) replacing former Board Members Kasem Ahmed and Zhihong Xu, Carl is also a GPC Member Organization representative for the Canadian Society of Plant Biologists (CSPB). He works at the University of British Columbia in Vancouver, where he is a Professor in the Department of Botany. He leads research exploring plant cell wall biosynthesis, and is an expert in tree genomics.

A highly cited and well published author, Carl is also a former President of the CSPB, a Corresponding Member of the American Society of Plant Biologists, and a Fellow of the American Association for the Advancement of Science. You can find out a bit more about Carl here.

Saijo photoYusuke Saijo – Board Member

As well as being a newly elected GPC Board Member, Yusuke Saijo is also new to the GPC, replacing his predecessor Takashi Ueda as the Member Organization representative for the Japanese Society of Plant Physiologists.

His lab work at the Nara Institute of Science and Technology in Japan is focused on understanding plant–microbe interactions, particularly plants’ ability to sense danger, undergo transcriptional reprogramming and priming, and the control of plant immunity under fluctuating environmental conditions.

Read more about Yusuke on our website.

Thank you

Huge thanks to our outgoing Board Members – Wilhelm Gruissem, Henry Nguyen, Gustavo Habermann, Kasem Ahmed and Zhihong Xu – for all their hard work and support during their terms.

And don’t forget…

The members of the GPC’s Executive Board are an elected subset of the Council’s representatives from professional plant, crop, environmental and agricultural societies from all over the world. But, if you are a member of one of our Member Organizations, you’re also a part of the GPC community! We encourage you to get in touch with your GPC representative, especially if you would like to get involved with our activities, or if you have any ideas as to how we can help filter the GPC’s news and information down from the Council to your society’s individual members.

You can find a full list of our member societies, their reps, and their contact details here.

Finally, if your society or professional association is not already a member of the GPC and would like to be, we’d love to hear from you! Please contact us at info@globalplantcouncil.org.

2015 Plant Science Round Up

By | Blog, GPC Community, Research

Following on from last week’s post, Now That’s What I Call Plant Science 2015, we bring you a year in Plant Science!

January

Arabidopsis

Image credit: Jean Weber. Used under license CC BY 2.0.

The year began with a surprising paper that turned our understanding of the phytohormone auxin on its head. Researchers in China and the USA created Arabidopsis knockout mutants of AUXIN BINDING PROTEIN 1 (ABP1), expecting them to fail to respond to auxin and have developmental defects, as previously seen in the abp1-1 knockdown mutant. Instead, these plants were indistinguishable from wild type plants, leading the authors to conclude that ABP1 is not required for auxin signaling or Arabidopsis development as previously believed.

Read the paper in PNAS: Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development.

A paper later in the year from the same authors found that the embryonic lethality of the abp1-1 mutant is actually caused by the off-target linked deletion of the adjacent BSM gene.

Read this paper in Nature Plants: Embryonic lethality of Arabidopsis abp1-1 is caused by deletion of the adjacent BSM gene.

The tale of ABP1 was examined in more detail on the GARNet blog, Weeding the Gems, which concluded: “In many ways this story is an excellent example of how science should work, where claims are independently tested to ensure that earlier experiments have been conducted or interpreted correctly.” Click here to read more.

 

February

A clever experiment from Germany led to a significant breakthrough in crop protection from insect pests.

When double-stranded RNA (dsRNA) is present within a eukaryotic cell, it is cleaved by the Dicer enzyme to form short interfering RNAs. These can bind to complementary RNA within a cell to target it for destruction, thus silencing the corresponding gene expression. This process is known as RNA interference (RNAi).

RNAi has previously been used to tackle insect herbivory by expressing insect-specific dsRNA in plants; however the protection has previously been incomplete. In this new study, published in Science, researchers produced dsRNA within chloroplasts, which do not have RNAi machinery. When dsRNA is expressed in the cytoplasm, the plant’s own Dicer enzyme breaks most of it down. When expressed in the chloroplasts, the dsRNA remained intact when eaten by insects, which proved much more effective at killing these pests.

Read the paper here: Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids.

 

March

Another crop protection study followed in March, when researchers in China cloned the genetic locus in rice that confers broad-spectrum resistance to planthoppers – insect pests that cause the loss of billions of dollars of crops per year. Three lectin receptor kinase genes were found in rice cultivars from the Philippines, which enable plants to survive an infestation of insects. When cloned into a susceptible rice cultivar, these genes conferred resistance to two different planthopper species.

Understanding the genetic basis of resistance is very important as marker-assisted breeding and selection could be used to develop resistant rice varieties, and potentially utilized in other species of cereal.

Read the paper in Nature Biotechnology: A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice

 

April

A European collaboration led to the development of 3DCellAtlas, a computational approach that semi-automatically identifies cell types in a developing 3D organ without the need for transgenic lineage markers. This program will enable the interpretation of dynamic organ growth and the spatial and temporal context of developmental cell divisions that produce the resultant plant. It could be integrated with growth in different conditions or with developmental mutants to examine exactly how these processes affect growth in 3D.

3DCellAtlas

Image credit: Montenegro-Johnson et al., 2015. Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas. The Plant Cell, vol. 27 no. 4, 1018–1033.

 

May

A special issue of the Plant Biotechnology Journal was published in May, focusing on the amazing advances in molecular farming. While the entire issue is worth delving into, we were particularly intrigued by the review on moss-made pharmaceuticals, which outlines the rapid progress made in the field.

The model moss Physcomitrella patens has rapidly become one of the organisms of choice in biotechnology, with a fully sequenced genome and an outstanding toolbox for genome-engineering. The authors describe how moss-made pharmaceuticals can easily be produced while remaining remarkably more stable from batch to batch than cultured animal cells. The system is easily scalable, making their production highly cost effective, and safe. The first moss-made pharmaceuticals are currently in clinical trials, so keep an eye out for much more from this field over the next few years.

Read the review: Moss-made pharmaceuticals: from bench to bedside.

 

June

In June, US researchers discovered a new role for chloroplast stromules, protrusions that extend from the surface of all plastid types. The function of stromules has been difficult to determine, but this research, published in Developmental Cell, suggests that they may provide a mechanism by which plastid signals are conveyed to the nucleus. The paper shows that chloroplast stromules are induced by defense responses such as programmed cell death signaling, and that the stromules extend to form dynamic connections with the nucleus. The stromules may therefore aid in the amplification and/or transport of immune response signals into the nucleus.

Read the paper: Chloroplast Stromules Function during Innate Immunity.

 

July

Extracellular self-DNA

Image credit: Veresoglou et al., 2015. Self-DNA: a blessing in disguise? New Phytologist, vol. 207, no. 3, 488–490.

In late 2014 and early 2015, Italian researchers published a set of articles showing that extracellular self-DNA, DNA from conspecifics, could inhibit the growth of organisms from a wide range of taxa, including plants, bacteria, fungi and animals. Conversely, these organisms were not affected by extracellular DNA from other unrelated species.

In July, New Phytologist published a letter offering an interpretation of the data as it relates to plants. Plants could interpret extracellular self-DNA as an indicator of intraspecific competition (which seeds could use as a cue to remain dormant) or of a hostile environment that has already caused the death of conspecifics, signaling them to ramp up their pre-emptive immune response to increase survival after neighbors have been damaged or killed. There are still a lot of mechanisms and ecological effects to be investigated in this new field, but this letter suggests several interesting avenues to investigate.

Read the article: Self-DNA: a blessing in disguise?

Original research papers in New Phytologist:

Inhibitory and toxic effects of extracellular self-DNA in litter: a mechanism for negative plant–soil feedbacks?

Inhibitory effects of extracellular self-DNA: a general biological process?

 

August

A US study in August revealed a surprising degree of conservation in gene expression patterns across a wide range of plant taxa during root development. This was particularly interesting because the spikemoss Selaginella was shown to use many of the same genes as the evolutionarily distant angiosperms, despite the fossil record suggesting that roots evolved independently in these two lineages. Perhaps roots in these two groups evolved by independently recruiting the same developmental program, or perhaps by elaborating on a previously unknown proto-root that existed in the common ancestor of vascular plants.

Read the paper in The Plant Cell: Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

 

September

Salt stress can significantly reduce the growth and yield of plants. Researchers in Germany identified two components of the cellulose synthase complex that directly interact with the microtubules and promote their dynamics, which interestingly were highly produced during salt stress conditions. During salt stress, cellulose microtubules depolymerize, however the newly discovered compounds, known as Companions of Cellulose Synthase, promote the reassembly of the microtubule to allow cellulose synthesis to continue.

Read the paper in Cell: A Mechanism for Sustained Cellulose Synthesis during Salt Stress

 

October

Throughout the year the GM debate in Europe reached several important milestones. In January the European Union (EU) changed its rules, giving individual countries more flexibility to decide for themselves whether or not to plant GM crops. In February, the UK Science and Technology Committee report stated that EU regulations preventing GM crops are not fit for purpose, and that they should be replaced with a trait-based system.

In October, EU member states revealed their stances on GM crops, with over half of Europe opting out of growing GM crops. Germany was the largest country to opt out of growing GM. The full list can be viewed here: Restrictions of geographical scope of GMO.

Read the news articles here:

EU changes rules on GM crop cultivation – January 2015

EU regulation on GM Organisms not ‘fit for purpose’ – February 2015

Half of Europe opts out of new GM crop scheme – October 2015

 

November

A collaboration between South African and UK scientists revealed how plants can use their circadian clock to pre-emptively boost their immune resistance at dawn, when fungal infection is most likely. Plants tend to decrease in susceptibility at dawn, but those with dysfunctional circadian clocks remained highly susceptible throughout the day. The research also showed that jasmonate signaling plays a crucial role in the circadian timing of resistance.

Read the article in The Plant Journal: Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea.

 

December

Single nucleotide exon

Image credit: Guo & Liu., 2015. A single-nucleotide exon found in Arabidopsis. Scientific Reports, 5:18087.

Researchers in China published the surprising finding that a single-nucleotide exon exists in the APC11 gene in Arabidopsis. This is the smallest exon ever to be discovered before. The team used an elegant set of APC11-GFP constructs to show that intron splicing around the single-nucleotide exon is effective in both Arabidopsis and rice. This finding has implications for future genome annotations, which might reveal many more single-nucleotide exons.

Read the paper in Scientific Reports: A single-nucleotide exon found in Arabidopsis.

 

What a wonderful year of science! What new knowledge will 2016 bring?

Plant scientists respond: “Plants are boring!”

By | Blog, GPC Community

Throughout my PhD, I often found myself explaining why plants are fascinating, justifying why I was devoting four years of my life to researching the minute details of their biology.

A few weeks ago, I thought I’d ask the #plantsci community on Twitter what makes them love plants. The response was phenomenal, so I thought I’d share it here as a fun way to transition to 2017!

(This is just a handful of the huge number of comments. To read them all, click here.)

 

 

Many of us are amazed by the fact that they can fend for themselves, rather than running away from harsh conditions or predators:

 

Don’t worry though, because plants can fight back:


They can alter their environments in really interesting ways too:

   

A lot of people are interested in plant reproduction:

 

 Some species can survive for millennia:


Much of the rest of the ecosystem relies on them…


… and of course, they give us much of what we need to survive…


We need to highlight how amazing plants are, to counteract “plant blindness”:


Plant blindness means that many people are unaware of the amazing things that are happening around them:


Being scientists, a lot of people liked how easy plants are to work with!

Some of the biggest scientific discoveries were made in plants:


In conclusion:

Thanks to everyone who took part in this twitter chat! This is just a subset of the huge number of comments we received. To read them all, click here!

Have we missed anything? Why do you love plants?

Now That’s What I Call Plant Science 2015

By | Blog, Research, Science communication

With another year nearly over we recently put out a call for nominations for the Most Influential Plant Science Research of 2015. Suggestions flooded in, and we also trawled through our social media feeds to see which stories inspired the most discussion and engagement. It was fantastic to read about so much amazing research from around the world. Below are our top five, selected based on impact for the plant science research community, engagement on social media, and importance for both policy and potential end product/application.

Choosing the most inspiring stories was not an easy job. If you think we’ve missed something, please let us know in the comments below, or via Twitter! In the coming weeks we’ll be posting a 2015 Plant Science Round Up, which will include other exciting research that didn’t quite make the top five, so watch this space!

  1. Sweet potato is a naturally occurring GM crop
Sweet potato contains genes from bacteria making it a naturally occurring GM crop

Sweet potato contains genes from bacteria making it a naturally occurring GM crop. Image from Mike Licht used under creative commons license 2.0

Scientists at the International Potato Center in Lima, Peru, found that 291 varieties of sweet potato actually contain bacterial genes. This technically means that sweet potato is a naturally occurring genetically modified crop! Alongside all the general discussion about GM regulations, particularly in parts of Europe where regulations about growing GM crops have been decentralized from Brussels to individual EU Member States, this story caused much discussion on social media when it was published in March of this year.

It is thought that ancestors of the modern sweet potato were genetically modified by bacteria in the soil some 8000 years ago. Scientists hypothesize that it was this modification that made consumption and domestication of the crop possible. Unlike the potato, sweet potato is not a tuber but a mere root. The bacteria genes are thought to be responsible for root swelling, giving it the fleshy appearance we recognize today.

This story is incredibly important, firstly because sweet potato is the world’s seventh most important food crop, so knowledge of its genetics and development are essential for future food supply. Secondly, Agrobacterium is frequently used by scientists to artificially genetically modify plants. Evidence that this process occurs in nature opens up the conversation about GM, the methods used in this technology, and the safety of these products for human consumption.

Read the original paper in PNAS here.

  1. RNA-guided Cas9 nuclease creates targetable heritable mutations in Barley and Brassica

Our number two on the list also relates to genetic modification, this time focusing on methods. Regardless of whether or not we want to have genetically modified crops in our food supply, GM is a valuable tool used by researchers to advance knowledge of gene function at the genetic and phenotypic level. Therefore, systems of modification that make the process faster, cheaper, and more accurate provide fantastic opportunities for the plant science community to progress its understanding.

The Cas9 system is a method of genome editing that can make precise changes at specific locations in the genome relatively cheaply. This novel system uses small non-coding RNA to direct Cas9 nuclease to the DNA target site. This type of RNA is small and easy to program, providing a flexible and easily accessible system for genome editing.

Barley in the field

Barley in the field. Image by Moldova_field used under creative commons license 2.0

Inheritance of genome modifications using Cas9 has previously been shown in the model plants, Arabidopsis and rice. However, the efficiency of this inheritance, and therefore potential application in crop plants has been questionable.

The breakthrough study published in November by researchers at The Sainsbury Laboratory and John Innes Centre both in Norwich, UK, demonstrated the mutation of two commercial crop plants, Barley and Brassica oleracea, using the Cas9 system and subsequent inheritance mutations.

This is an incredibly exciting development in the plant sciences and opens up many options in the future in terms of genome editing and plant science research.

Read the full paper in Genome Biology here.

  1. Control of Striga growth

Striga is a parasitic plant that mainly affects parts of Africa. It is a major threat to food crops such as rice and corn, leading to yield losses worth over 10 billion US dollars, and affecting over 100 million people.

Striga infects the host crop plant through its roots, depriving them of their nutrients and water. The plant hormone strigolactone, which is released by host plants, is known to induce Striga germination when host plants are nearby.

In a study published in August of this year the Striga receptors for this hormone, and the proteins responsible for striga germination were identified.

Striga plants are known to wither and die if they cannot find a host plant upon germination. Induction of early germination using synthetic hormones could therefore remove Striga populations before crops are planted. This work is vital in terms of regulating Striga populations in areas where they are hugely damaging to crop plants and people’s livelihoods.

Read the full study in Science here.

Striga, a parasitic plant. Also known as Witchweed.

Striga, a parasitic plant. Also known as Witchweed. Image from the International Institute of Tropical Agriculture used under creative commons license 2.0

  1. Resurrection plants genome harvesting

Resurrection plants are a unique group of flora that can survive extreme water shortages for months or even years. There are more than 130 varieties in the world, and many researchers believe that unlocking the genetic codes of drought-tolerant plants could help farmers working in increasingly hot and dry conditions.

During a drought, the plant acts like a seed, becoming so dry that it appears dead. But as soon as the rains come, the shriveled plant bursts ‘back to life’, turning green and robust in just a few hours.

In November, researchers from the Donald Danforth Plant Science Centre in Missouri, US, published the complete draft genome of Oropetium thomaeum, a resurrection grass species.

O. thomaeum is a small C4 grass species found in Africa and India. It is closely related to major food feed and bioenergy crops. Therefore this work represents a significant step in terms of understanding novel drought tolerance mechanisms that could be used in agriculture.

Read the full paper in Nature here.

  1. Supercomputing overcomes major ecological challenge

Currently, one of the greatest challenges for ecologists is to quantify plant diversity and understand how this affects plant survival. For the last 500 years independent research groups around the world have collected this diversity data, which has made organization and collaboration difficult in the past.

Over the last 500 years, independent research groups have collected a wealth of diversity data. The Botanical Information and Ecology Network (BIEN) are collecting and collating these data together for the Americas using high performance computing (HPC) and data resources, via the iPlant Collaborative and the Texas Advanced Computing Center (TACC). This will allow researchers to draw on data right from the earliest plant collections up to the modern day to understand plant diversity.

There are approximately 120,000 plant species in North and South America, but mapping and determining the hotspots of species richness requires computationally intensive geographic range estimates. With supercomputing the BIEN group could generate and store geographic range estimates for plant species in the Americas.

It also gives ecologists the ability to document continental scale patterns of species diversity, which show where any species of plant might be found. These novel maps could prove a fantastic resource for ecologists working on diversity and conservation.

Read more about this story on the TACC website, here.