Findings pave the way for developing environmentally friendly fungicides. Fungal diseases cause substantial losses of agricultural harvests each year. The fungus Botrytis cinerea causing gray mold disease is a major problem for farmers growing strawberries, grapes, raspberries, tomatoes and lettuce. To mitigate the problem, they often resort to applying chemical fungicides which can lose their effectiveness over time.
A new study has analyzed one environment-sensitive genic male sterile (EGMS) line that exhibited fertility transition under specified environmental conditions.
After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought. The tissue succulence engineering method devised for this small flowering plant can be used in other plants to improve drought and salinity tolerance with the goal of moving this approach into food and bioenergy crops.
Forest conservation areas in oil palm plantations play a vital role in storing carbon and boosting rainforest biodiversity, a new study on palm oil agriculture in Borneo has revealed.
When cells don’t divide into proper copies of themselves, living things fail to grow as they should. For the first time, scientists now understand how a protein called TANGLED1 can lead to accurate cell division in plants.
Wheat, in its own right, is one of the most important foods in the world. It is a staple food for more than 2.5 billion people, it provides 20% of the protein consumed worldwide and, according to the FAO, supplies more calories than any other grain. Its long-term productivity, however, is threatened by rising temperatures, among other factors. Stress from heat, an increasing trend due to climate change, affects its performance, a fact that needs urgent solutions bearing in mind that, according to some estimates, the world’s population will reach 9 billion by the year 2050.
Citrus greening disease (Huanglongbing of HLB), transmitted by the Asian citrus psyllid, is currently the biggest threat to the citrus industry and is threat to many parts of the world. In Florida alone, citrus greening disease has accounted for losses of several billions of U.S. dollars. Despite HLB’s widespread prevalence, factors influencing the epidemic are poorly understood because most research has been conducted after the pathogen has been introduced.
Amongst the world’s most challenging problems is the need to feed an ever-growing global population sustainably. Securing the food supply is of paramount importance, and more attention must be given to the threat from fungal pathogens competing with us for our own crops.
The UN’s Intergovernmental Panel on Climate Change (IPCC) claims that agriculture is one of the main sources of greenhouse gases, and is thus by many observers considered as a climate villain. This conclusion, however, is based on a paradigm that can be questioned according to a new article.
A team of scientists has developed a way to potentially thwart the spread of a disease-causing bacterium that harms more than 100 plant species worldwide, an advance that could save the nursery industry billions a year.