Tag

communications Archives - The Global Plant Council

How to publish your work in New Phytologist

By | Blog, GPC Community

Reproduced with permission

In two short videos, New Phytologist Editor-in-Chief Prof Alistair Hetherington provides a step by step guide for early career researchers, intending to publish their work in New Phytologist.

“One of my top tips would be: get the author list decided very early on.”

 

Alistair talks through the process of working out whether research is within the scope of the journal, deciding the author list, and submitting a presubmission enquiry.

“Remember, the Editor will use the covering letter to help him or her decide whether or not to send your work out for review. You need to put your work in context, and describe how your findings are novel, and exciting.”

 

In part two, Alistair explains the submission process, including what should be included in the covering letter. He then describes the peer review process at New Phytologist and what to do after you’ve received a decision on your manuscript.

Read the transcript of both videos on the New Phytologist blog. The audio from the videos is available to download under a Creative Commons licence from the New Phytologist Soundcloud page. You are welcome to redistribute this for teaching purposes.

Reproduced with permission.

A year at the Global Plant Council

By | ASPB, Blog, GPC Community

Last April I joined the Global Plant Council as a New Media Fellow along with Sarah Jose from the University of Bristol. The GPC is a small organization with a big remit: to bring together stakeholders in the plant and crop sciences from around the world! As New Media Fellows, Sarah and I have have assisted in raising the online profile of the GPC through various social media platforms. We wrote about our experiences in growing this blog and the GPC Twitter and Facebook accounts in the The Global Plant Council Guide to Social Media, which details our successes and difficulties in creating a more established online presence.

 

Why do it?

My wheat growing in Norfolk field trials. I have spent every summer for the past 3 years out here analysing photosynthesis and other possible contributors to crop yield

My wheat growing in Norfolk field trials. I have spent every summer for the past 3 years out here analysing photosynthesis and other possible contributors to crop yield

I chose to apply for the fellowship during the third year of my PhD. Around this time I had started to consider that perhaps a job in research wasn’t for me. It was therefore important to gain experience outside of my daily life in the lab and field, explore possible careers outside of academia and of course to add vital lines to my CV. I still loved science, and found my work interesting, so knew I wanted to stay close to the scientific community. Furthermore, I had always enjoyed being active on Twitter, and following scientific blogs, so the GPC fellowship sounded like the perfect opportunity!

 

The experience

I think I can speak for both Sarah and myself when I say that this fellowship has been one of the best things I’ve done during my PhD. Managing this blog for a year has allowed me to speak to researchers working on diverse aspects of the plant sciences from around the world. My speed and writing efficiency have improved no end, and I can now write a decent 1000 word post in under an hour! I discovered the best places to find freely available photos, and best way to present a WordPress article. Assisting with Twitter gave me an excuse to spend hours reading interesting articles on the web – basically paid procrastination – and I got to use my creativity to come up with new ways of engaging our community.

Next career move, camera woman?

Filming interviews at the Stress Resilience Forum. Next career move, camera woman?

Of course going to Brazil for the Stress Resilience Symposium, GPC AGM and IPMB was a highlight of my year. I got to present to the international community both about my own PhD research and the work of the GPC, Sarah and I became expert camera women while making the Stress Resilience videos, and I saw the backstage workings of a conference giving out Plantae badges on the ASPB stand at IPMB. It didn’t hurt that I got to see Iguassu Falls, drink more than a few caipirinhas and spend a sneaky week in Rio de Janeiro!

Helping out on the ASPB stand

Helping out on the ASPB stand with Sarah

 

Thank you

Working with the GPC team has been fantastic. I learnt a lot about how scientific societies are run and the work they do by talking to the representatives from member societies at the AGM. The executive board have been highly supportive of our activities throughout. Last but not least, the lovely GPC ladies, Ruth, Lisa and Sarah have been an amazing team to work with – I cannot thank you enough!

I have now handed in my PhD, left the GPC, and moved on to a new career outside of academic research. I’m going into a job focused on public engagement and widening access to higher education, and have no doubt my GPC experiences have helped me get there. My advice if you’re unsure about where you want to end up after your PhD? Say “yes” to all new opportunities as you never know where they will take you.

Thank you the GPC! Hopefully I’ll be back one day!

 

Thank you! It's been amazing!

Thank you! It’s been amazing!

Making Plant Genomics Front Page News with an Emblematic Genome Project: The Bauhinia Flower

By | Blog, Future Directions
Keep Calm.

Bahunia is the national flower of Hong Kong, GigaScience is launching a crowdfunding campaign to learn more about the biological and genetic history of this flower.

By Scott Edmunds, Executive Editor, GigaScience Journal

‘Big Data’ is becoming increasingly ubiquitous in our lives, and we at GigaScience are big fans of approaches democratizing its utility through crowdfunding and crowdsourcing. With much mistrust and fear of genetic technologies there is also a huge need to educate and throw light on “what goes on under the hood” during the process of genomic sequencing and research.

After helping promote community genome and microbiome projects such as the Puerto Rican “peoples parrot”, Azolla Genome, Kittybiome, and the community cactus (previously highlighted in the Global Plant Council Blog), the team at GigaScience has finally decided to launch our own.

Inspired by our Hong Kong home, this month we’ve launched an exciting new crowdfunding project to help learn about the enigmatic biological and genetic history of the beautiful symbol of Hong Kong: the Bauhinia flower.

Hong Kong’s emblem is the beautiful flower of the Hong Kong Orchid Tree Bauhinia x blakeana: it is mysterious in origin, and lovely along the roadside and in any garden. Being used as a food crop in India and Nepal, Bauhinias are actually a legume rather than an orchid, and while a transcriptome has been sequenced as part of the 1KP project (Bauhinia tomentosa) no species of the genus has yet had its genome sequenced.

A Brief History of Bauhinia blakeana

It was first discovered in the 1880’s by the famous horticulturist Father Jean-Marie Delavey

The Bahunia flower

The Bahunia flower is the symbol of Hong Kong

growing on a remote mountainside in Hong Kong, but how it got there is a mystery – especially since it is sterile. The missionary collector subsequently propagated it in the grounds of the nearby Pokfulam Sanatorium, and from there it was introduced to the Hong Kong Botanic Gardens and across the world. Originally described as a new species in 1908, it was subsequently named after the Hong Kong governor Sir Henry Blake, who had a strong interest in botany. We have an opportunity to get a glimpse into this fascinating history by carrying out a crowdfunding project to determine its entire genetic make up.

In addition, it’s a project we are trying to get everyone involved in: from gardeners to botanists, historians to photographers, university researchers to school children – really, anyone interested in being a part of Hong Kong’s First Emblematic Genome Project and understanding the biological secrets of this unique flower.

Plant Genomics for the Masses

Teaming up with BGI Hong Kong and scientists at the Chinese University of Hong Kong, this new crowdfunding project will use one of the best techniques to help uncover the secrets of any living being: genomic sequencing. While the cost of sequencing has crashed a million fold since the human genome project, plant genomes are still challenging. While Bauhinia have a relatively small genome (0.6C), being a hybrid means it will be very challenging to assemble using current short-read technologies. To get around this we are having to sequence the two likely parents first, pushing the reagent costs that we need to cover through crowdfunding up to about $10,000. Studies using individual genetic markers have shown that the species is likely a hybrid of two local species, Bauhinia variegata and Bauhinia purpurea, but this has yet to be confirmed at a genomic scale.

Genome sequencing is also one of the key technologies defining the 21st century, and a field in which Hong Kong has made major advances (for example in BGI Hong Kong’s giant sequencing capacity, as well circulating DNA diagnostics), though more effort is needed to engage and inform the general public.

Through sequencing the genome of our emblem to better understand where it came from; this will help to train local students to assemble and analyze the data – crucial skills needed for this field to advance; and engage and educate the public through local pride. Outreach and awareness-building is key, and we have already managed to get plant genomics and Bauhinia onto the front cover of the SCMP Sunday Magazine and on Hong Kong radio.

 

You can also access the YouKu version of the above video here.

Get involved!

The project seeks a variety of things from the community: at its most basic level, help in the form of donations can be provided at the project’s website. As a community project no contribution is too small, so please contribute via the crowdfunding page.

Furthermore, we’ll be carrying out community engagement and citizen science in the form of Bauhinia Watch, where people in the community can inform researchers about sightings of the flower and its relatives, and look for the hypothesized very rare individual plants that may produce seeds. Photographs along with location information are especially desired, and can be shared with the global community on social media (use the #BauhiniaWatch hashtag).

Also, getting involved in educating the community is key. The project’s website, in addition to explaining the science behind the project, provides information for identifying the different Bauhinia species, which can be fun for curiosity driven individuals of any age. Now is the time! Bauhinia blakeana is in peak flowering season in Hong Kong from November to March.

Moreover, this is a great opportunity for creating school projects, to learn about botany, evolution, the latest scientific technologies, and to participate in the research or carry out fundraising to join the Bauhinia community.

This will be the first Hong Kong genome project: funded by the public; sequenced in Hong Kong; assembled and analyzed by local students; and directly shared with the community.

Being Open Data advocates, all data produced will immediately be shared with our GigaDB platform, and all methods, analyses and teaching materials will be captured and made open to empower others to carry out similar efforts around the world.

Bauhinia Genome welcomes contributions and interest from across the globe, hoping this serves as a model to inspire and inform other national genome projects, and aid the development of crucial genomic literacy and skills across the globe; inspiring and training a new generation of scientists to use these tools to tackle the biggest threats to mankind: climate change, disease and food security. We have already collected enough money to fund the transcriptome, and the next goal is to get enough funds to start sequencing the genomes of the family members. To enable us to do this support us through our crowdfunding site, like us on Facebook or twitter, and help spread the word.

For more information and to support the project visit the website and crowdfunding page. follow us on Twitter @BauhiniaGenome, or on Facebook, and include the hashtag #BauhiniaWatch for any news or pictures you’d like to share on social media.

 

Bauhinia Postcard

applications and tools

The Global Plant Council Guide To Social Media

By | ASPB, Blog, Future Directions, GPC Community, Plantae, SEB

Here at the GPC we love social media. It provides a fantastic platform upon which we can spread awareness about our organisation and the work we do. Since Lisa Martin’s appointment as Outreach and Communications Manager in February of this year, and the New Media Fellows two months later, we have expanded our online presence and are reaching more people than ever before. We still have a way to go, but here are a few things we’ve learnt over the past year that might provide you with a bit more social media know-how.

  1. Tweet, tweet, and tweet some more

To increase your following as an individual try to produce maybe one or two good tweets everyday. If you’re tweeting on behalf of an organization and have more time or people power, 5–8 tweets a day should be your target.

Global Plant Council twitter account

The Global Plant Council twitter account now has over 1500 followers. Find us @GlobalPlantGPC

Our Twitter following has grown rapidly over the past year. We had 294 followers on Twitter in September 2014 and now have over 1500! Much of this has been down to there now being four of us maintaining the account rather than Ruth Bastow (@PlantScience) on her own.

The more you tweet, and the better you tweet, the more followers you will get. Things move fast in the Twittersphere, so just a few days of inactivity can mean you drop off the radar.

For more hints about using Twitter see this great article from Mary Williams (@PlantTeaching): Conference Tweeting for Plant Scientists Part 1 and Part 2.

  1. If your followers won’t come to you, go to your followers

Decide on who you want to connect with, find out which social media platform they se most, and set yourself up!

As a global organization we want to connect with all our members and plant scientists around the world, so we need to use different means of communication to do this. In April 2015 we set up a Spanish language Twitter account with Juan Diego Santillana Ortiz (@yjdso), an Ecuadorian-born PhD student at Heinrich-Heine University in Dusseldorf, Germany, who translates our tweets into Spanish.

Of course Twitter is not universally popular, and our main following seems to come from the

Scoopit

The newest edition to the GPC social media family is our GPC Scoop.It account which you can find here

UK and US. To connect with those choosing to use different communication platforms, New Media Fellow Sarah Jose set up a GPC Scoop.It account in September 2015. Around this time we also set up a GPC Facebook page after many of our member organizations told us this was their primary means of connecting with their communities. Although relatively new, this page is slowly gaining momentum and we hope it will provide a great outlet for conversation in the future. Find out about which of our member organizations are on Facebook here.

If there’s a site you use to stay up to date with science content that we don’t have a presence on, do let us know and we will look into setting up an account!

  1. Generate your own content

Ultimately, the best way to expand your reach online is to generate your own content.

The GPC blog was started in October 2014, and in its first 14 months of life received an average of 142 views per month. However, since Lisa, myself and Sarah started working with the GPC, we have been generating one blog post every week, with the result of our monthly views shooting up to almost 700 views per month since May.

This just shows that generating interesting and regular content really does work in terms of increasing reach and online presence. All these blog posts have also contributed towards a growing following on our various social media sites over the past six months.

If you want to write for us, please send us an email or get in touch on Twitter! We are always looking for contributions from the plant science community. Perhaps you’ve recently attended a scientific meeting, are doing a really cool piece of research, organized a great outreach activity or have seen something relevant in the news. Whatever it is, we want to know.

We’re also happy to write about the GPC for your blog or website, so if you would like us to contribute an article, please get in touch!

  1. Cover as many platforms as possible

Try to have a global presence across as many platforms as you think you can maintain, although an inactive account on any social media site won’t do you any favors, so don’t take on too much!

I’ve already described our presence on Twitter, Facebook, Scoop.It and the blog, all of which help make our organization accessible, however people want to use social media.

In addition to this we of course have the GPC website, and Lisa sends out a monthly e-Bulletin providing a summary of all the information published on the website for that month. Anyone can sign up here to stay up to date with our activities, and it’s free!

In a bid to further reach out to members that perhaps don’t engage with social media (yet!), Lisa wrote this article explaining what the GPC does and sent it out to be published by our various member organizations.

  1. Plantae
New Media Fellow Sarah Jose promotes our new Plantae platform at IPMB 2015

New Media Fellow Sarah Jose promotes our new Plantae platform at IPMB 2015

Confession time, this isn’t really a helpful hint on how to use social media, but Plantae is so good it deserves a section all on its own!

We are hoping Plantae, set up by the GPC in collaboration with the ASPB, and with support from the SEB, will be the digital ecosystem for the plant science community. It will provide a platform for plant scientists to collaborate with one another, network, and access journals, advice and jobs. You can read more about Plantae on our blog, here.

It’s now in beta testing and you can sign up to give it a go at http://www.plantae.org. Let us know what you think!

Nanopores: Next, next generation sequencing

By | Blog, Future Directions

Do you have a genome sequencer in your pocket or are you just happy to see me?

By Nikolai Adamski

On September 4 I attended an event sponsored by Oxford Nanopore Technologies (ONT) at Norwich Research Park, UK, which focused on nanopore technologies. This new technology has been dubbed ‘Next, next-generation sequencing’, and could have really exciting implications for the future of genome sequencing.

ONT has developed a pocked-sized genome sequencing device called the MinION that can sequence genomes in real time. Thanks to recent pop culture this generates visions of cuddly yellow creatures with an overly developed desire to serve super-villains. However, a MinION is actually a new genome sequencing device. To help confused readers, the figure below should help clarify the issue once and for all (Figure 1).

Figure 1: Demonstrating the difference between the pop culture Minion on the left and the genome sequencing MinION on the right.

Figure 1: Demonstrating the difference between the pop culture Minion on the left and the genome sequencing MinION on the right.

The striking thing about the MinION is its size. Sequencing machines these days vary in size from something that sits on a desktop, to something that fills half a student’s room. The MinION however, fits in the palm of your hand. This is possible thanks to highly miniaturized electronics.

So how does it work?

At the core of the MinION are two biological components: the nanopore protein, which gives the company its name, and a motor protein. The nanopore protein sits on top of an artificial layer and acts a microscopic sluice gate that controls how much of the sample solution passes through it into the lower layer. The sample solution contains DNA, but also ions that pass through the nanopore, thus creating a measurable electrical current. If a big molecule like a strand of DNA passes through the nanopore, the flow of ions is perturbed, which results in a change in the electrical current. These changes are recorded and interpreted to give the sequence of said DNA molecule.

Meanwhile, the motor protein sticks to a DNA molecule, attaches itself to the top of the nanopore, and feeds the DNA through the nanopore as a single strand at a certain speed. This process is similar to a ratchet. Each MinION device has thousands of nanopores allowing for as many molecules to pass through and be sequenced in real time. This is nicely illustrated in a video made by ONT, which you can see here which is well worth a watch!

The sequence data are sent to a cloud server in real time, where they are transformed and analyzed and the final data sent back to the user. This eliminates the need for an expensive computer infrastructure as well as the need for extensive training in bioinformatics.

Limitations of the technology

So far so good, but there are still some issues with the MinION system. One of these is the average length of the DNA molecules that can be sequenced. In theory, the MinION system is able to sequence DNA molecules of any length, although the data from users at last week’s event suggests that, at the moment, the average length of sequence obtained is around 6,000 base pairs (bp). This is still a great value, but there is room for improvement. Another issue is the amount of data generated by a single MinION run, which according to user experience is generally around 1Gb, approximately 200 times the size of the gut bacterium E. coli. Both of these issues can be easily remedied by running several MinION sequencers with the same sample.

A larger problem is the matter of sequencing accuracy, which is now somewhere around 90%, although it can be as low as 75%. This can in part be compensated for by the sheer amount of data generated. However, it would require a lot of sequencing to make up for these mistakes, and is a critical point that needs to be addressed by ONT in the future.

Current applications

The MinION system has been and is being used worldwide for a number of different applications. Scientists and medical doctors have used the MinION to monitor strains of the Ebola virus in different patients. Thanks to the real time sequencing data and cloud-based data analysis, patients could be screened within a few days as opposed to weeks. Another interesting example of the usefulness of the MinION system was when scientists travelled to the Tanzanian jungle to assess the biodiversity of frogs in the region.

There are many more fascinating applications for the MinION sequencer. Scientists who are interested can join the MinION Access Programme (MAP) to become part of the research and development community.

I very much enjoyed the ONT event and I am hopeful and curious about what the next few years will bring in terms of innovation and development.

______________________________________________________________________________________________________________________________________

About the Author:

nikolaiadamskiNikolai Adamski is a postdoctoral scientist working at the John Innes Centre in Norwich, UK, in the group of Cristobal Uauy. He studies yield and yield-related traits in wheat, trying to identify the underlying genes to understand the control and regulation of these traits.

 

You can follow him on Twitter @NikolaiAdamski

 

 

A Postcard From… The Argentinean Society of Plant Physiology (SAFV)

By | Blog, GPC Community, SAFV

Professor Edith Taleisnik

This week Professor Edith Taleisnik describes the vision and activities of the Argentinean Society of Plant Physiology (SAFV), a Member Organization of the Global Plant Council dedicated to promoting collaboration in plant science within Argentina, across Latin America and beyond.

SAFV member Dr Constanza Carrera drinks mate, an infusion made from leaves of Ilex paraguariensis, which is very popular in Argentina, Uruguay and southern Brazil.

SAFV member Dr Constanza Carrera drinks mate, an infusion made from leaves of Ilex paraguariensis, which is very popular in Argentina, Uruguay and southern Brazil.

The Argentinean Society of Plant Physiology (Sociedad Argentina de Fisiologia Vegetal; SAFV) was founded in 1958 to nucleate researchers and teachers in plant physiology in Argentina. Since then the SAFV has maintained continuous activity in the country and the region, providing opportunities for the dissemination and exchange of information related to plant function. It has about 350 members, mostly from Argentina and also from neighboring Uruguay. The SAFV is linked with the Global Plant Council and many other important international plant science organizations.

Exchanging ideas in Argentina and beyond

29th SAFV meeting

The 29th SAFV meeting

One of the main objectives of the society is to organize meetings, which are held every two years. The last one was held in Mar del Plata, and was attended by nearly 600 people. The SAFV has close ties with the Brazilian Society of Plant Physiology (BSPP), so every other SAFV meeting is a joint Latin American event in association with the BSPP. These meetings provide a unique opportunity for scientists in the area to meet, analyze and exchange views on the future of this field, to plan for joint efforts and enterprises, to share personal experiences and contribute to a regional and global perspective of local endeavors.

The participation of students and young scientists in SAFV meetings is stimulated by invitations to deliver lectures and organize symposia, and by making available fellowships that cover travel and registration costs. In accordance with its mandate to promote and diffuse knowledge in plant science, the SAFV also organizes and sponsors courses and workshops.

Conversations with keynote speakers

Keynote speaker discussions at an SAFV meeting

Poster sessionPlant science, and plant physiology in particular, has experienced steady growth and development in Argentina, reflecting the importance of agriculture in its broadest sense; pastures and forests for the Argentine economy. Established groups all over the country produce novel data on various aspects of plant function and interaction with other organisms and the environment, which is particularly relevant to local and global crop production. The wide range of this work is reflected in the proceedings of the last plant physiology meeting.

Other Argentinian plant science societies

There are several other plant science societies in Argentina. Scientists working on botanical and morphological topics are affiliated to the Sociedad Argentina de Botánica (SAB). The focus of the members of the Asociación Argentina de Ecología (AsAE) is centered in environmental topics. A more recently formed society, the Asociación Argentina de Fitopatólgos (AAF), is dedicated to plant pathology, while the Sociedad Argentina de Investigación Bioquímica y Biología Molecular (SAIB) features a section specifically devoted to plant biochemistry and molecular biology. All of these societies hold periodical meetings, stimulate the work of young scientists through incentives and prizes, and publish journals (e.g. Ecología Austral) and books.

Get in touch

If you’d like to know more about the work of the SAFV, or how you can get involved with the society, have a look at their website, or get in touch via Facebook or Twitter (@fisiovegetal).


About the author

Edith TaleisnikProfessor Edith Taleisnik researches the physiology of plants under saline stress for the Argentinean National Scientific and Technical Research Council (CONICET), and is based at the Instituto de Fisiologia y Recursos Geneticos Vegetales  (IFRGV) CIAP, INTA, Argentina. Edith was the president of the SAFV from 2000 to 2004, and is now a member of the scientific committee.

Plant Biology Scandinavia 2015

By | Blog, GPC Community, Scandinavian Plant Physiology Society, Scientific Meetings
Celia Knight and Saijaliisa Kangasjarvi at the conference dinner

Celia Knight and Saijaliisa Kangasjarvi at the conference dinner

The 26th Scandanavian Plant Physiology Society (SPPS) Congress took place from the 9th – 13th August at Stockholm University. Celia Knight attended the meeting and has written a report for the blog this week, so that those of you who couldn’t attend are up to speed!

A diversity of speakers and topics

Attending SPPS 2015 was a fantastic opportunity to hear about progress across a really broad spectrum of plant biology research. The program included sessions on development, epigenetics and gene regulations, high-throughput biology, photobiology, abiotic stress, education and outreach, and biotic interactions. There really was something for everyone! Additionally, the organizers had made a notable effort to include a good mix of both established and early career researchers, further adding to the diversity of talks on offer.

I was struck by the contributions from the various Society awards so will focus on these.

Beautiful Stockholm where the meeting was held

Beautiful Stockholm where the meeting was held

SPPS awards

Gunnar Öquist (Umeå University, Sweden) was given the SPPS Award in recognition of his outstanding merited contribution to the science of plant biology. His talk entitled “My view of how to foster more transformative research” provided a reminder that the dual aims of research, both to solve problems and to seek new knowledge, are very important if global challenges are to be met.

The SPPS early career award recognizes a highly talented scientist who has made a significant contribution to Scandinavian plant biology. This year two early career awards were given. The first recipient, Ari-Pekka Mähönen (University of Helsinki, Finland), received the award for his work on growth dynamics in Arabidopsis thaliana, and showed some amazing sections to follow cambium development. Nathaniel Street (Umeå University, Sweden) also received an award for his work “Applying next generation sequencing to genomic studies of Aspen species and Norway Spruce”. Both gave great talks including strong research in these areas; it was great to see upcoming researchers take the spotlight and give us a glimpse to the future of plant biology.

Torgny Näsholm (SLU, Umeå Sweden) was awarded the Physiologia Plantarum award. This award is given to a scientist that has made significant contribution to the areas of plant science covered by the journal Physiologia Plantarum. Torgny uses microdialysis, a technique currently used by neuroscientists, to investigate the availability of soil nitrogen to plants. Data generated using this technique are now bringing into question our current view of nitrogen availability measured using traditional methods.

Additional activities included a tour of the Bergius Botanic Garden

Additional activities included a tour of the Bergius Botanic Garden

The Popularisation prize, awarded to Stefan Jansson (Umeå University, Sweden), recognizes significant contributions to science communication and public engagement. Stefan’s work in public engagement has been wide-ranging. He has been involved with The Autumn Experiment, a citizen science project engaging schools in observation, data collection and real research. Recently Stefan published a book in Sweden, called ‘GMO’, which tackles the response of societies to genetically modified organisms.

At the congress, Stefan took over as the new President of the SPPS. This could lead to further emphasis and resources being placed on communicating science as the society moves forward.

Poster prizes

Prizes for the best posters are also awarded at the meeting. Five judges, including myself, assessed the posters, and the competition was fierce. It was impossible to split the top prize, so joint 1st prizes were awarded to Veli Vural Uslu (Heidelberg University, Germany) on “Elucidating early steps of sulfate sensing mechanisms by biosensors” and to Timo Engelsdorf (Norwegian University of Science and Technology, Norway) for “Plant cell wall integrity is maintained through cooperation of different sensing mechanisms”. Joint second prizes went to Zsofia Stangl (Umeå University, Sweden) on “Nutrient requirement of growth in different thermal environments” and to Annika Karusion (University of Tartu, Estonia) for “Circadian patterns of hydraulic and xylem sap properties: in situ study on hybrid aspen.”

Additional activities

Like any meeting, SPPS wasn’t all work and no play! Lisbeth Jonsson (Stockholm University, Sweden) and her team organized an excellent program. I feel very fortunate, on this short trip, to have had the opportunity to view Stockholm’s fine City Hall where Nobel laureates have dined, as well  as the incredibly preserved Vasa ship, which sank in Stockholm bay on its maiden voyage in 1628.

I very much look forward to seeing how the society progresses in the future, and nurturing new friendships and collaborations I made at the congress.

The Drinks reception at the City Hall, walking in the footsteps of Nobel Laureates

The Drinks reception at the City Hall, walking in the footsteps of Nobel Laureates