New esearch has found using environmental DNA (eDNA), in conjunction with conventional methods, to monitor how insects interact with flowers could potentially improve conservation rates.
For several years, ecological research has argued that climate often has no determining influence on the distribution of forests and savannas in tropical regions. However, an international research team has now succeeded in proving that it depends mostly on climatic factors whether regions in Africa are covered by forest or savanna. The study, confirms the dominant role of climate in the formation of global vegetation patterns.
Corn leaves on the lowest rung of a plant’s stem spend much of the day shrouded in shade. A gust of wind can crack the window to photosynthesis, and growth, for those leaves, but they typically can’t adjust in time to seize the moment. Research is identifying genes that could open the way to breeding plants better at capitalizing on yield-boosting sunlight.
Some southern beeches in the Andes have plumbed deeper for moisture as the surface has dried up. But doing so may deplete resources and undermine the trees’ future health.
Applying an advanced imaging technology to plant roots, researchers have developed a new understanding of essential root chemicals that are responsible for plant growth
New detailed genetic analysis clarifies the evolutionary relationships among orchids and reveals that the plant’s ability to grow on trees evolved independently in several lineages.
Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. An international team of plant biologists has demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields.
In a comprehensive review of breeding salinity tolerance in plants, researchers argue that the main reason research advances have not been translated into commercial salt-tolerant crop varieties for farmers is that this has not been a priority for plant breeders. However, with increasing impacts of climate change due to sea-level rise and storm surges forcing seawater further inland, the need to increase crop salinity tolerance is becoming more urgent, and so priorities will change.
Plants show enormous variety in traits relevant to breeding, such as plant height, yield and resistance to pests. One of the greatest challenges in modern plant research is to identify the differences in genetic information that are responsible for this variation. A research team has now developed a method to identify precisely these special differences in genetic information. Using the example of maize, they demonstrate the great potential of their method and present regions in the maize genome that may help to increase yields and resistance to pests during breeding.
Researchers have discovered the secrets behind how plants move sugar using a protein called the SUC transporter. This breakthrough solves a long-standing mystery of the plant ‘heart’ and sheds new light on how plants defend themselves from pests.