Category

Blog

Celebrating Norman E. Borlaug’s Centenary: Looking backwards for the leap forward

By | Blog, GPC Community | No Comments

You cannot build peace on empty stomachs
John Boyd Orr
1949 Nobel Peace Laureate and First FAO Director General (1945-1948)

On the centennial of Borlaug’s birth Global Plant Council representatives Rodomiro Ortiz and Russell Jones reflect on his achievements and legacy.

wheat1The last Nature editorial “Wheat Lag” [1] affirms “growth in yields of the cereal must double if the Green Revolution is to be put back on track”.  Google records about ½ million hits for the term “Green Revolution,” which refers to the huge increase between 1943 and the late 1970s in the production of rice and wheat, the main small grain cereals that feed the world. Plant research had led to the development of new cultivars, the sharing of seed, and improved crop husbandry. Without these developments, crop yields would have been at least 20% less and food prices about 19% higher than they had been in 2000, according to Evenson and Gollin [2]. Their modeling reveals that calorie consumption would have dropped by about 5% and the number of malnourished children increased by at least 2%. It is estimated that the Green Revolution helped improve the health status of 32 to 42 million pre-school children.

BorlaugWithout doubt, the leader and main advocate of this Green Revolution was the late Norman E. Borlaug (1914-2009), a wheat breeder who continues to be a source of inspiration in plant science and whose impact on livelihoods was immense [3]. As noted elsewhere, his wheat cultivars saved millions of humans from starvation and death [4]. It was therefore not surprising that the Nobel Committee of the Norwegian Parliament awarded him the Nobel Peace Prize in 1970. The award noted that, “more than any other single person of this age, he has helped to provide bread for a hungry world” [5]. Wheat breeding, however, only meant something to Borlaug if it increased production and improved food security. In his words “For more than half a century I have worked with the production of more and better wheat for feeding the hungry people, but wheat is merely a catalyst, a part of the picture. I am interested in the total development of human beings. Only by attacking the whole problem can we raise the standard of living for all people in all communities, so they will be able to live decent lives. This is something we want for all people on this planet.

Even though critics of the Green Revolution insisted that Borlaug’s “miracle wheat” depleted natural resources [6], research shows that the net effect of high grain yields resulting from the Green Revolution reduced emissions of up to 161 gigatons of carbon (GtC) (590 GtCO2e) between 1961 and 2005 [7]. In one of his last writings, Borlaug argued eloquently with evidence that significant grain yield increases [8] actually spared land from agricultural uses. His assertion has recently been verified: plant breeding on the major staple crops between 1965 and 2004 saved an estimated 18 to 27 million hectares from being brought into cultivation [9]. The widespread adoption of high-yielding bred cultivars preserved natural ecosystems rather than displacing pastures and deforesting lands for intensive agriculture. 

In his last years, Borlaug cautioned that there was no room for complacency in the fight to ensure food security, especially when there are still almost 1 billion people going to bed hungry every night in the world. He was convinced that advances in plant science could provide new tools for crossbreeding, crop husbandry and more efficient use of resources. He contended that, in the absence of scientific evidence that food derived from transgenic crops harmed either human health or the environment, consumers would benefit from their use.  Particularly in the developing world, plant biotechnology could help to ensure the food supply [10]. He always thought that uncontrolled population growth posed more threat to the environment than plant science.

Borlaug warned of the dangers of research subject to excessive organization. Research directed from the higher reaches of administration could result in scientists using valuable time to write reports justifying their work, or in finding themselves doing research isolated from their peers [8]. During his prolific professional career he advocated that No matter how excellent the research done in one scientific discipline is, its application in isolation will have little positive effect on crop production. What is needed are venturesome scientists who can work across disciplines to produce appropriate technologies and who have the courage to make their case with political leaders to bring these advances to fruition.”

A growing world population increases the need for nutritious and quality food, feedstock, fiber, and fuel, while at the same time the Earth faces a decline in arable land. Agro-ecosystems are affected by land erosion, water scarcity, stalled crop productivity, overgrazing of pastures, deforestation, and anthropogenic climate change.  These new global challenges require an integrated plant science agenda that goes beyond productivity gains; this agenda needs to include increased resilience, eco-efficiency, and sustainability. Plant scientists need to work together with growers, retailers, entrepreneurs and policy makers for intensifying sustainably agro-ecosystems. Growers will need to increase output with less input, adapt their farming to climate change, and conserve agro-biodiversity by capitalizing on the advances brought by plant science. Agribusiness entrepreneurs together with growers and plant and food scientists need to add value throughout the food chain and improve the quality and safety of the human diet. Likewise, decision makers, with support from policy analysts, should ensure that food markets work for social benefits. Plant science must therefore contribute to a healthy and prosperous society in the 21st Century by providing knowledge, methods and tools that deliver diverse, nutritious and healthy food for a balanced diet. Increasing the wellbeing of everyone in this global village will be the best tribute to the memory of Norman E. Borlaug, the humanitarian plant scientist who changed the world.

Rodomiro Ortiz, Swedish University of Agricultural Sciences, Alnarp, Sweden 

Russell Jones, University of California, Berkeley, USA

[1] http://dx.doi.org/10.1038/507399b

[2] Evenson RE, Gollin D (2003) Science 300:758-762 http://dx.doi.org/10.1126/science.1078710

[3] Ortiz R, Mowbray D, Dowswell C, Rajaram S (2007) Plant Breeding Reviews 27:1–38 http://media.wiley.com/product_data/excerpt/86/04719979/0471997986.pdf

[4] Easterbrook G (1997) The Atlantic 1997.01.01 http://www.theatlantic.com/magazine/archive/1997/01/forgotten-benefactor-of-humanity/306101/

[5] http://www.nobelprize.org/nobel_prizes/peace/laureates/1970/press.html

[6] Bunge J (2014) The Wall Street Journal 2014.03.25 http://blogs.wsj.com/corporate-intelligence/2014/03/25/green-revolution-or-agricultural-disaster-a-statue-in-d-c-rekindles-the-debate/

[7] Burney JA, Davis SJ, Lobell DB (2010) Proceedings of the National Academy of Sciences (USA) 107:12052–12057 http://dx.doi.org/10.1073/pnas.0914216107

[8] Borlaug NE (2007) Euphytica 157:287–297 http://dx.doi.org/10.1007/s10681-007-9480-9

[9] Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M (2013) Proceedings of the National Academy of Sciences (USA) 110:8363–8368 http://dx.doi.org/10.1073/pnas.1208065110

[10] http://blog.chron.com//sciguy/2008/07/norman-borlaug-genetic-modification-can-feed-the-world/

 

 

Getting heard

By | Blog | No Comments

Impactful knowledge exchange

By Ros Gleadow (Monash University)

Post of our “Global Collaboration” series

My first job was as a research assistant in a wheat physiology lab. I read a few papers on the effect of rising CO2 on yield and grain quality (e.g. Gifford 1979, Hocking & Meyer 1991). “That’s interesting“, I thought, but surely this won’t be an issue in my lifetime? The effect of CO2 emissions on grain protein and bread quality have only recently come to the fore but the science has been known for decades. Why does it take so long to get the message across? It took 50 years from the discovery that tobacco was harmful and addictive to stopping advertising it; 30 years from the observation that putting babies to sleep on their fronts were associated with increased SIDS to a change in parenting patterns. But do we have that luxury? Can the process be sped up?

You often hear “scientists just need to communicate better“. But communication is a two-way street. You can talk all you like but if no one is listening, then it’s not going to get very far. In this blog post, I want to challenge my fellow scientist to think beyond talking at people to facilitating genuine knowledge exchange.

Knowledge Exchange programs: Start with the Why

There are four main questions to ask when developing knowledge exchange programs:

  • Who is doing the exchanging?
  • What do we want to communicate?
  • How can this be facilitated?
  • And most importantly – Why? To improve food security in a changing world
Figure 1: Starting with Why: Adapted from Sinek

Simon Sinek is famous for challenging businesses and communicators to start with the Why, and then everything else takes on a new perspective (Fig. 1) In the case of the Global Plant Council, the why is to improve food security in a changing world. Much as we love plants, the point of the Global Plant Council is not plant biology, it’s the preservation of biodiversity and food security.

Sinek then moves onto the HOW and the WHAT. As researchers, I believe we need to add another layer in there – WHO. This comes from our WHY. There are many different audiences – policy makers, research agencies, researchers, consortiums, industry, the general public, managers, students, journalists. farmers, climate change deniers. 

Effective communication demands that understand the purpose of the communication (WHY), and the wants, needs and desires of the different stake holders (WHO).

Communicating so that people get the message

Scientists are experts. That’s a good thing – we need experts. Back in the 1950s, people believed experts; they did whatever the doctor said without questioning it. But in this world of ‘alternative facts, a fresh approach is needed.  Social scientists have shown that giving your audience more and more facts does little to shift opinions. I believe we need to break out of the paradigm where, as Julian Cribb puts it (Cribb and Hartomo 2002), scientists are the “high priests” of knowledge because that makes scientific knowledge seem like a religion, something you can choose to believe in or not.

Fig2: Levels of communication (adapted from Cribb and Hartomo)

There are different ways of communicating with your audience (Fig. 2). If the audience respects the science then a monologue where you are the expert works well, although even then an effort should be made to make what you are saying relevant to the audience.

Ask yourself: What does THIS audience need to know? The answer usually comes from dialogue, where you as the scientist listen to what the person is interested in, or what the needs of the industry group are, and then you respond. At both these levels, the scientist is still the ‘expert’.

With community engagement knowledge is built collaboratively – the scientist is just one part of the conversation. This is hard for those of us who think we know everything, but it can lead to new and valuable perspectives. One example stands out in my mind.  This was at a workshop that Prof Tim Cavagnaro and I ran on cyanide in cassava with plant breeders, dieticians, epidemiologist and agricultural extension workers from Mozambique (Burns et al. 2012). One of the agricultural scientists commented that they preferred to grow cassava with big leaves. I’m immediately thinking, yes, that makes sense –  a high leaf area increased photosynthesis, etc. Then Tim asked: “Why do you do that?” and he answered, “Well, we eat the leaves, and if they are big, we don’t need to pick as many.” This was an important lesson for me in listening to the end user.

Facilitating Knowledge Exchange

The question remains, is there a role for the Global Plant Council in helping to improve knowledge exchange in line with our purpose of promoting plant science with the view to improving global food security? We’d love to hear from our member organizations about what you find helpful that we currently do, and what we could we do more of.

This blog post has been mostly about informal knowledge exchange programs but the principles apply to formal programs as well. Practical information like what language to use or the appropriate medium can be readily found with a quick internet search. You need to find a style you are comfortable with. Prof Sir Gustav Nossal, one of Australia’s leading scientists, once said: “Assume infinite intelligence and zero knowledge” [of your audience]. Good advice.

Our WHY is too important – we can’t afford to wait another 50 years.

References

Hocking, P. J. & Meyer, C. P. 1991 Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry matter and nitrogen in wheat and maize.

Gifford, R.M. 1979 Growth and yield of CO2-enriched wheat under water-limited conditions. Australian Journal of Plant Physiology 6: 367-378  

Cribb, J & Hartomo, TS 2002, ‘Chapter 1: A case for sharing knowledge’. Sharing knowledge: a guide to effective science communication, CSIRO Publishing, Melbourne, pp.1-15.

Sinek, S 2009 “Start with Why: How Great Leaders Inspire Everyone to Take Action” Penguin, NY.

Burns AE, Gleadow RM, Zacarias A, Cuambe CE, Miller RE, Cavagnaro TR (2012) Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. Journal of Agricultural and Food Chemistry. 60:4946–4956.