A lot is riding on the continued advancement of plant sciences.Take the food supply, for starters. Climate change and population growth will continue to pose challenges in the future, and crop production will require innovation and progress by plant scientists in order to keep pace. It isn’t an overstatement to say that populations around the world will go hungry if plant science stagnates
Researchers generated genome sequences for nearly 600 green millet plants and released a very high quality reference S. viridis genome sequence. Analysis of these plant genome sequences also led researchers to identify a gene related to seed dispersal in wild populations for the first time.
Deprived of sunlight, plants are unable to transform carbon dioxide from the atmosphere into sugars. They are essentially starved of one of their most important building blocks. The plant’s not-so-secret weapon to combat this and other scarcity is autophagy. Similar to recycling, autophagy helps break down damaged or unwanted pieces of a cell, so that building blocks can be used again. New research shows that plants that lack the core components for autophagy have to get creative about recycling nutrients like carbon when they’re left in the dark.
Drought causes major crop losses in many regions of the world, and climate change threatens to exacerbate the occurrence of drought in temperate as well as arid regions. Researchers used a sophisticated mathematical modelling approach to study the effects of introducing CAM photosynthesis, which is used by plants that are able to thrive in arid conditions, into C3 plants, which tend to thrive only in areas where sunlight intensity and temperatures are moderate and water is plentiful.
Scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields. Scientists have known that crop yields would increase if they could accelerate the photosynthesis process, where plants convert carbon dioxide (CO2), water and light into oxygen and eventually into sucrose, a sugar used for energy and for building new plant tissue.
Scientists have characterized a sucrose transporter protein found in common beans. The recently discovered protein could help us understand how beans tolerate hot temperatures.
A team of scientists have developed a method for visualizing microtubule dynamics and cell membrane protein endocytosis in living plant cells, an important step forward in plant cell biology.
Floral architecture influences pollination and reproduction: open flowers facilitate cross-pollination, while closed flowers limit outcross.
As a plant grows, it moves cellular material from its version of manufacturing sites to the cell wall construction zone. Transporter proteins, called motor proteins, are thought to move these cell wall cargo via a complex highway system made up of microtubule tracks. The position of these tracks must be stabilized so that cargo are delivered to the correct locations.
Glyphosate is a widely used broad-spectrum herbicide that targets both broadleaf plants and grasses (dicots and monocots). This recent work aids our understanding of adaptive evolution in amaranth plants and has implications for optimizing pesticide use in the environment.