Scientists have warned of the ‘devastating’ impact that fungal disease in crops will have on global food supply unless agencies across the world come together to find new ways to combat infection. Worldwide, growers lose between 10 and 23 per cent of their crops to fungal infection each year, despite widespread use of antifungals. An additional 10-20 per cent is lost post harvest. Academics predict those figures will worsen as global warming means fungal infections are steadily moving polewards, meaning more countries are likely to see a higher prevalence of fungal infections damaging harvests.
Researchers have reconstructed the evolutionary history of a highly specific olfactory receptor in the Egyptian cotton leafworm, a crop pest. This receptor plays an essential role in moth reproduction because it allows males to recognise the female sex pheromone. The scientists determined that the receptor appeared around 7 million years ago and that eight amino acids underlie receptor-pheromone binding. Their findings can guide the development of biocontrol strategies directed against this pest.
Researchers have developed an electronic patch that can be applied to the leaves of plants to monitor crops for different pathogens – such as viral and fungal infections – and stresses such as drought or salinity. In testing, the researchers found the patch was able to detect a viral infection in tomatoes more than a week before growers would be able to detect any visible symptoms of disease.
The impact of the fall armyworm pest on maize crops and communities in Sub-Saharan Africa were worsened by the COVID-19 pandemic, according to paper. Drawing upon recent empirical literature on the pest since it was first reported in Africa in 2016, scientists from Nairobi, Kenya, highlighted how it was responsible for up to 58% of maize losses worth up to US $9.4 billion.
Now a global study has found mosses are not just good for the garden, but are just as vital for the health of the entire planet when they grow on topsoil. Not only do they lay the foundations for plants to flourish in ecosystems around the world, they may play an important role mitigating against climate change by capturing vast amounts of carbon.
A new digital tool can help farmers plan weed control with reduced pesticide use.
Researchers have identified specific proteins and amino acids that could control bioenergy plants’ ability to identify beneficial microbes that can enhance plant growth and storage of carbon in soils.
A new study has found that mass media campaigns aimed at changing pesticide use to fight crop pests and diseases are more effective when farmers are exposed to multiple forms of communication.
Can the deathbed rally of a few dying cells save the rest of the body? New evidence from plants. The “deathbed rally,” the “last hurrah” — it’s not unheard of for living things to mysteriously perk up in the moments before death. It turns out that plants do it too, at least at the cellular level.
Cassava is one of the most important crops in the tropics, feeding half a billion people in more than 80 countries. Cassava bacterial blight (CBB) is a devastating disease that causes crop losses worldwide. Research demonstrated that a new technology, epigenome editing, can reduce CBB symptoms in cassava plants while maintaining normal growth and development.