Plants can’t self-isolate during a disease outbreak, but they can get help from a friend — beneficial soil microbes help plants ward off a wide range of diseases. Now, scientists have uncovered a major part of the process in which beneficial fungi help corn plants defend against pathogens.
For billions of years life on Earth was restricted to aquatic environments, the oceans, seas, rivers and lakes.
Then 450 million years ago the first plants colonised land, evolving in the process multiple types of beneficial relationships with microbes in the soil.
These relationships, known as symbioses, allow plants to access additional nutrients. The most intimate among them are intracellular symbioses that result in the accommodation of microbes inside plant cells. A study recently published describes the discovery of a common genetic basis for intracellular symbioses.
Scientists learn how plants manipulate their soil environment to assure a steady supply of nutrients
Dissolved carbon in soil can quench plants’ ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts. Experiments show how synthetic biology tools can help understand environmental controls on agricultural productivity.
Botanists have long held a fascination for heterotrophic plants, not only because they contradict the notion that autotrophy (photosynthesis) is synonymous with plants, but also because such plants are typically rare and ephemeral. However, it is still a matter of debate as to how these plants obtain nutrition.