Grapevine (Vitis vinifera L.) is a crop of great economic and agricultural value throughout the world. In 2019, the International Organisation of Vine and Wine (OIV) reported that over 7 million hectares are dedicated to the cultivation of this crop, resulting in the global production of about 78 million tonnes of grape and 292 million of hectolitres of wine. However, a production of this magnitude is possible thanks to the massive use of pesticides to counteract various diseases that can affect grape yield. Indeed, pesticide applications are at the basis of intensive agriculture, as they guarantee protection from pathogens, pests and weeds. In absence of pesticide applications, farmers could experience up to 40% of production losses in a single year.
A new field of research in microbiology is transforming the way scientists see fungi, bacteria and other microorganisms. Microbiome research is so promising that it has drawn attention from funders and industry as well as scientists. In the United States alone, the market for microbiome-based agricultural products is expected to be worth more than $10 billion by 2025. Research on the human microbiome has surpassed $1.7 billion in the past decade.
Widespread fungal disease in plants can be controlled with a commercially available chemical that has been primarily used in medicine until now. In a comprehensive experiment the team has uncovered a new metabolic pathway that can be disrupted with this chemical, thus preventing many known plant fungi from invading the host plant.
The collaboration revealed that the symbiotic relationship between plants and fungi provides nitrates to plants, which could lead to reduced fertilizer use.
A research group has succeeded in greatly increasing the catalytic activity of Rubisco, the enzyme which fixes carbon from CO2 in plant photosynthesis. The research team also hypothesized the mechanism which determines the catalytic activity of Rubisco, based on structural analysis of the proteins.
An international team of researchers led by biologists has examined how seed formation is coordinated with fruit growth. In their report, they explain the genetic control mechanisms underlying the process. If you open up a pea pod, you will find that all of the peas inside are the same size and the same distance apart. The same is true of princess beans, runner beans and soybeans as well as various other peas and beans, and it also applies to non-pulses. This is surprising because both the seed size and number and the pod size differ substantially from one variety to the next.
A team of scientists has completed one of the largest genetic analyses ever done of any agricultural crop to find desirable traits in wheat’s extensive and unexplored diversity.
Scientists have characterized a sucrose transporter protein found in common beans. The recently discovered protein could help us understand how beans tolerate hot temperatures.
Representing some of the most troublesome agricultural weeds, waterhemp, smooth pigweed, and Palmer amaranth impact crop production systems across the U.S. and elsewhere with ripple effects felt by economies worldwide. In a landmark study, scientists have published the most comprehensive genome information to date for all three species, marking a new era of scientific discovery toward potential solutions.
All plants and animals respire, releasing energy from food. At the cellular level, this process occurs in the mitochondria. But there are differences at the molecular level between how plants and animals extract energy from food sources. Discovering those differences could help revolutionize agriculture.