Celebrate Fascination of Plants Day (May 18th 2017) with an exciting new science communication project!
Botany Live is asking scientists, educators, science communicators and plant fans from around the world to live-stream their fascination with plants, sharing experiments, botanic garden explorations, tours of a lab or herbarium, Fascination of Plants Day events, interviews, discussions and more!
The aim is to spark an interest in new audiences, reaching people who might not otherwise engage with Fascination of Plants Day.
Get involved by emailing webmaster@aobblog.com for a link to a Google form where you can register your livestream session! The event will take place from the 18th-21st May.
This post was written by Dr Colin Khoury. Colin studies diversity in the crops people grow and eat worldwide, and the implications of change in this diversity on human health and environmental sustainability. He is particularly interested in the wild relatives of crops. Colin is a research scientist at the International Center for Tropical Agriculture (CIAT), Colombia, and at the USDA National Laboratory for Genetic Resources Preservation in Fort Collins, Colorado.
New Changing Global Diet website explores changes in diets over the past 50 years in countries around the world.
One of the central concepts that unifies those concerned with biodiversity is the understanding that this diversity is being lost, piece by piece, to a greater or lesser degree, globally.
The same goes for the biodiversity of what we eat. Scientists and activists have worried about the loss of crops and their many traditional varieties for at least a hundred years, since botanist N. I. Vavilov traveled the world in search of plants useful for cultivation in his Russian homeland. He noticed that diversity was disappearing in the cradles of agriculture – places where crops had been cultivated continuously for thousands of years. The alarm sounded even louder 50 years ago, during the Green Revolution, when farmers in some of the most diverse regions of the world largely replaced their many locally adapted wheat, rice and other grain varieties with fewer, more uniform, higher yielding professionally bred varieties.
Cradles of agriculture: origins and primary regions of diversity of agricultural crops
(Click to magnify)
This is ironic, since modern productive crop varieties are bred by wisely mixing and matching diverse genetic resources. The disappearance of old varieties thus reduces the options available to plant breeders, including those working to produce more nutritious or resilient crops.
Being a food biodiversity scientist, I grew up (in the professional sense) with the loss of crop diversity looming over my head, providing both a raison d’être, and an urgency to my efforts. Somewhere along the line, I became interested in understanding its magnitude. That is, counting how many crops and how many varieties have been lost.
That’s where it started to become complicated, and also more interesting. Because, when I went looking for signs of the loss of specific crops, I couldn’t find any. Instead, I found evidence of massive global changes in our food diversity that left me worried, but at the same time hopeful.
A bit of background. Most of the numbers seen in the news on how much crop diversity has been lost go back to a handful of reports and books that reference a few studies: for example, the changing number of vegetable varieties for sale in the U.S. over time. The results are estimations for a few crops at local to national levels, but they somehow have been inflated to generalized statements about the global state of crop diversity, the most common of which being some variation of “75% of diversity in crops has been lost”.
Diverse produce, but is it all local? Image credit: Karyn Christner. Used under license: CC BY 2.0.
Putting true numbers on diversity loss turns out to be a complicated and contested business, with no shortage of strong opinions. One big part of the problem is that there aren’t many good ways to count the diversity that existed before it disappeared. Researchers have done some work to assess the changes in diversity in crop varieties of Green Revolution cereals, and to some degree on the genetic diversity within those varieties. The results indicate that, although diversity on farms decreased when farmers first replaced traditional varieties with modern types, the more recent trends are not so simple to decipher.
It was particularly surprising to me that very little work had been done to understand the changes in what is probably the simplest level to measure: the diversity of crop species in the human diet, that is, how successful is maize versus rice versus potato versus quinoa and so on. I realized that data on the contribution of crops to national food supplies were available for almost all countries worldwide via FAOSTAT, with information for every year since 1961. Perhaps these were the data that could show when a crop fell off the world map.
Fast forward through a couple of years of investigation. To my great surprise, I found that not a single crop was lost over the past 50 years! There was no evidence for extinction. What was going on?
It turns out that my failure to see any loss of crops was due to the lack of sufficient resolution in the FAO data. Only 52 meaningful crop species-specific commodities are measured and a number of these are general groupings such as “cereals, other”. Because of this lack of specificity, the data couldn’t comprehensively assess the crops that have been most vulnerable to changes in the global food system over the past 50 years. In FAO data, these plants are either thrown into the general categories or they aren’t measured at all, especially if they are produced only on a small scale, for local markets or in home gardens. This is, in itself, sign enough that they may be imperiled. We need better statistics about what people eat (and grow) around the world. But, enough is known to be confident that many locally relevant crops are in decline.
Over the past 50 years, almost all countries’ diets actually became more diverse, not less, for the crops that FAO statistics do report on. We found that traditional diets that were primarily based on singular staples a half century ago, for instance rice in Southeast Asia, had diversified over time to include other staples such as wheat and potatoes. The same was true for maize-based diets in Latin America, sorghum- and millet-based diets in sub-Saharan Africa, and so on.
Not that there weren’t plant winners and losers. Wheat, rice, and maize, the most dominant crops worldwide 50 years ago, became more important globally. Other crops emerged as widespread staples, particularly oilcrops such as soybean, palm oil, sunflower, and rapeseed oil. And, as the winners came to take more precedence in food supplies around the world, alternative staples such as sorghum, millets, rye, cassava, sweet potato, and yam were marginalized. They haven’t disappeared (at least not yet), but they have become less important to what is eaten every day.
As countries’ food supplies became more diverse in the winner crops reported by FAO, and the relative abundance of these crops within diets became more even, food supplies worldwide became much more similar, with an average decrease in variation between diets in different countries of 68.8% over the past 50 years!
This is why, although we could see no absolute loss in crops consumed over the past 50 years, I am concerned. For even in the relatively small list of crops reported in the FAO data, many of these foods are becoming marginalized, day by day, bite by bite. That doesn’t seem like a good thing for the long-term resilience of our agricultural areas, nor for human health, although it’s important to remember that such changes are the collateral damage resulting from the creation of highly productive mega-crop farming systems, which have increased the affordability of these foods worldwide, leading to less stunting and other effects of undernutrition worldwide. On the other hand, global dependence on a few select crops equates to expansive monocultures, with more lives riding on the outcome of the game of cat and mouse between pestilence and uniform varieties grown over large areas. Moreover, cheaply available macronutrients have contributed to the negative effects of the nutrition transition, including obesity, heart disease and diabetes.
So why then am I hopeful? Because the data, and some literature, and my own direct experience also indicate that diets in recent years, in some countries, are beginning to move in different directions, reducing the excessive use of animal products and other energy-dense and environmentally expensive foods, and becoming more diverse, particularly with regard to fruits and vegetables, and even healthy grains. What better evidence than quinoa, which was relatively unknown outside the Andes a couple of decades ago, and is now cultivated in 100 countries and consumed in even more?
When we published our findings of increasing homogeneity in global food supplies, we hadn’t yet found a good way to make the underlying national-level data readily visible to interested readers. This is why I’m tremendously excited to announce the publication of our new Changing Global Diet website, which provides interactive visuals for 152 countries over 50 years of change. We that hope you will enjoy your own investigations of dietary change over time. Perhaps you can tell us where you think the changing global diet is headed.
This week’s post was written by Katie Tomlinson, a PhD student at the University of Bristol, UK, who spent three months as an intern at the National Crops Resource Research Institute in Uganda. She fills us in on the important research underway at the Institute, and how they communicate their important results to local farmers and benefit rural communities.
Over the summer, I had a great time at the National Crops Resources Research Institute (NaCRRI) in Uganda. I’m currently in the second year of my PhD at the University of Bristol, UK, where I’m researching how the cassava brown streak disease (CBSD) viruses are able to cause symptoms, replicate and move inside plants. I was lucky enough to be given a placement at NaCRRI as part of the South West Doctoral Training Partnership Professional Internship for PhD Students (PIPS) scheme, to experience the problem for myself, see the disease in the field, meet the farmers affected and investigate the possible solutions.
Cassava brown streak disease symptoms on tubers. Image credit: Katie Tomlinson.
Cassava is a staple food crop for approximately 300 million people in Africa. It is resilient to seasonal drought, can be grown on poor soils and harvested when needed. However, cassava production is seriously threatened by CBSD, which causes yellow patches (chlorosis) to form on leaves and areas of tubers to die (necrosis), rot and become inedible.
Despite being identified in coastal Tanzania 80 years ago, CBSD has only been a serious problem for Uganda in the last 10 years, where it was the most important crop disease in 2014–2015. The disease has since spread across East Africa and threatens the food security of millions of people.
NaCRRI is a government institute, which carries out research to protect and improve the production of key crops, including cassava. The focus is on involving farmers in this process so that the best possible crop varieties and practices are available to them. Communication between researchers and farmers is therefore vital, and it was this that I wanted to assist with.
Scoring cassava plants for Cassava brown streak symptoms. Image credit: Katie Tomlinson.
When I arrived I was welcomed warmly into the root crop team by the team leader Dr Titus Alicai, who came up with a whole series of activities to give me a real insight into CBSD. I was invited to field sites across Uganda, where I got to see CBSD symptoms in the flesh! I helped to collect data for the 5CP project, which is screening different cassava varieties from five East and Southern African countries for CBSD and cassava mosaic disease (CMD) resistance. I helped to score plants for symptoms and was fascinated by the variability of disease severity in different varieties. The main insight I gained is that the situation is both complex and dynamic, with some plants appearing to be disease-free while others were heavily infected. There are also different viral strains found across different areas, and viral populations are also continually adapting. The symptoms also depend on environmental conditions, which are unpredictable.
I also got to see super-abundant whiteflies, which transmit viruses, and understand how their populations are affected by environmental conditions. These vectors are also complex; they are expanding into new areas and responding to changing environmental conditions.
It has been fascinating to learn how NaCRRI is tackling the CBSD problem through screening different varieties in the 5CP project, breeding new varieties in the NEXTGEN cassava project, providing clean planting material and developing GM cassava.
Tagging cassava plants free from Cassava brown streak disease for breeding. Image credit: Katie Tomlinson.
And there’s the human element…
In each of these projects, communication with local farmers is crucial. I’ve had the opportunity to meet farmers directly affected, some of whom have all but given up on growing cassava.
Challenging communications
Communicating has not been easy, as there are over 40 local languages. I had to adapt and learn from those around me. For example, in the UK we have a habit of emailing everything, whereas in Uganda I had to talk to people to hear about what was going on. This is all part of the experience and something I’ll definitely be brining back to the UK! I’ve had some funny moments too… during harvesting the Ugandans couldn’t believe how weak I was; I couldn’t even cut one cassava open!
Real world reflections
I’m going to treasure my experiences at NaCRRI. The insights into CBSD are already helping me to plan experiments, with more real-world applications. I can now see how all the different elements (plant–virus–vector–environment–human) interact, which is something you can’t learn from reading papers alone!
Working with the NaCRRI team has given me the desire and confidence to collaborate with an international team. I’ve formed some very strong connections and hope to have discussions about CBSD with them throughout my PhD and beyond. It’s really helped to strengthen collaborations between our lab work in Bristol and researchers working in the field on the disease frontline. This will help our research to be relevant to the current situation and what is happening in the field.
Saying goodbye to new friends: Dr. Titus Alicai (NaCRRI root crops team leader), Phillip Abidrabo (CBSD MSc student) and Dr. Esuma Williams (cassava breeder). Image credit: Katie Tomlinson.
On May 18th, botany geeks around the world shared their love of plants in this year’s Fascination of Plants Day! Here’s our round-up of some of the best #fopd tweets!
First things first, test your skills with this challenging plant science quiz:
The global population is projected to reach 9.6 billion by 2050, and to accommodate this, crop production must increase by 60% in the next 35 years. Furthermore, our global climate is rapidly changing, putting our cropping systems under more strain than ever before. Agriculture will need to adapt to accommodate more extreme weather events and changing conditions that may mean increased instance of drought, heatwaves or flooding. The Global Plant CouncilStress Resilience initiative, was created to address these issues.
Back in October the Global Plant Council, in collaboration with the Society for Experimental Biology brought together experts from around the world at a Stress Resilience Forum to identify gaps in current research, and decide how best the plant science community can move forwards in terms of developing more resilient agricultural systems. We interviewed a number of researchers throughout the meeting, asking about their current work and priorities for the future. Watch the best bits in the video below:
Here at the GPC we love social media. It provides a fantastic platform upon which we can spread awareness about our organisation and the work we do. Since Lisa Martin’s appointment as Outreach and Communications Manager in February of this year, and the New Media Fellows two months later, we have expanded our online presence and are reaching more people than ever before. We still have a way to go, but here are a few things we’ve learnt over the past year that might provide you with a bit more social media know-how.
Tweet, tweet, and tweet some more
To increase your following as an individual try to produce maybe one or two good tweets everyday. If you’re tweeting on behalf of an organization and have more time or people power, 5–8 tweets a day should be your target.
The Global Plant Council twitter account now has over 1500 followers. Find us @GlobalPlantGPC
Our Twitter following has grown rapidly over the past year. We had 294 followers on Twitter in September 2014 and now have over 1500! Much of this has been down to there now being four of us maintaining the account rather than Ruth Bastow(@PlantScience) on her own.
The more you tweet, and the better you tweet, the more followers you will get. Things move fast in the Twittersphere, so just a few days of inactivity can mean you drop off the radar.
For more hints about using Twitter see this great article from Mary Williams (@PlantTeaching): Conference Tweeting for Plant Scientists Part 1 and Part 2.
If your followers won’t come to you, go to your followers
Decide on who you want to connect with, find out which social media platform they se most, and set yourself up!
As a global organization we want to connect with all our members and plant scientists around the world, so we need to use different means of communication to do this. In April 2015 we set up a Spanish language Twitter account with Juan Diego Santillana Ortiz (@yjdso), an Ecuadorian-born PhD student at Heinrich-Heine University in Dusseldorf, Germany, who translates our tweets into Spanish.
Of course Twitter is not universally popular, and our main following seems to come from the
The newest edition to the GPC social media family is our GPC Scoop.It account which you can find here
UK and US. To connect with those choosing to use different communication platforms, New Media Fellow Sarah Jose set up a GPC Scoop.It account in September 2015. Around this time we also set up a GPC Facebook page after many of our member organizations told us this was their primary means of connecting with their communities. Although relatively new, this page is slowly gaining momentum and we hope it will provide a great outlet for conversation in the future. Find out about which of our member organizations are on Facebook here.
If there’s a site you use to stay up to date with science content that we don’t have a presence on, do let us know and we will look into setting up an account!
Generate your own content
Ultimately, the best way to expand your reach online is to generate your own content.
The GPC blog was started in October 2014, and in its first 14 months of life received an average of 142 views per month. However, since Lisa, myself and Sarah started working with the GPC, we have been generating one blog post every week, with the result of our monthly views shooting up to almost 700 views per month since May.
This just shows that generating interesting and regular content really does work in terms of increasing reach and online presence. All these blog posts have also contributed towards a growing following on our various social media sites over the past six months.
If you want to write for us, please send us an email or get in touch on Twitter! We are always looking for contributions from the plant science community. Perhaps you’ve recently attended a scientific meeting, are doing a really cool piece of research, organized a great outreach activity or have seen something relevant in the news. Whatever it is, we want to know.
We’re also happy to write about the GPC for your blog or website, so if you would like us to contribute an article, please get in touch!
Cover as many platforms as possible
Try to have a global presence across as many platforms as you think you can maintain, although an inactive account on any social media site won’t do you any favors, so don’t take on too much!
I’ve already described our presence on Twitter, Facebook, Scoop.It and the blog, all of which help make our organization accessible, however people want to use social media.
In addition to this we of course have the GPC website, and Lisa sends out a monthly e-Bulletin providing a summary of all the information published on the website for that month. Anyone can sign up here to stay up to date with our activities, and it’s free!
In a bid to further reach out to members that perhaps don’t engage with social media (yet!), Lisa wrote this article explaining what the GPC does and sent it out to be published by our various member organizations.
Plantae
New Media Fellow Sarah Jose promotes our new Plantae platform at IPMB 2015
Confession time, this isn’t really a helpful hint on how to use social media, but Plantae is so good it deserves a section all on its own!
We are hoping Plantae, set up by the GPC in collaboration with the ASPB, and with support from the SEB, will be the digital ecosystem for the plant science community. It will provide a platform for plant scientists to collaborate with one another, network, and access journals, advice and jobs. You can read more about Plantae on our blog, here.
It’s now in beta testing and you can sign up to give it a go at http://www.plantae.org. Let us know what you think!
It’s the International Year of Soils! Tell this to someone and you’ll often get the response: “A year of dirt? Who came up with that idea?” So here is a blog post to answer exactly that and explain why soils are not just dirt.
Why soil?
Consider the world around you and all the things that make the earth a great place to live. We all require food, clothing, shelter, and water to survive – all of which are related to a single, often overlooked resource: SOIL.
Food
Consider your breakfast this morning: did you have cereal with milk, sausage and bacon, pastries, toast, orange juice? What were the ingredients? Flour from wheat, oranges from a tree, milk from a cow that has been fed on grass, meat from animals who are fed with grains and forage feed. All your breakfast foods, and foods in general, can be traced to plants, and plants are dependent on soil! Plants get water from the soil as well as the nutrients they need to grow. If we really think about it, when you eat, you are “eating soil”, several steps removed.
Shelter
Next, think about the home you live in. It is easy to see that bricks, made from clay and sand, are connected to soil. Lumber is wood, which comes from trees, which need soil to survive. So when you look at your house consider that it would not exist as you know it without the soil.
Clothes
Finally, consider the clothes you wear. Natural fibers used to make clothing are all directly related to plants – cotton and flax (linen) are plant fibers, wool is fiber made from the hair of animals that eat plants, and silk is made by silk worms that eat plants. Rayon is a semi-synthetic fiber made by processing naturally occurring cellulose, which comes from plants or trees. Even synthetic materials are derived from petroleum products made from fossil fuels, which in turn originate from plant and animal remains that have undergone extreme changes deep in the earth. They too needed soil when they were living. Once again we see that soil is critical to our clothing needs.
Water
Soil is critical to our food, fiber, and shelter needs. It also plays an important role in providing us with one other essential item: water. There is a finite amount of water on earth, and only a small proportion is drinkable. Given that it is constantly recycled, how does this water remain clean enough for us to drink?
In urban areas we treat water with chemicals to make it suitable for human consumption. However, many communities get their water from chemically untreated groundwater, which is treated by the soil instead. As water infiltrates and percolates through the soil, the chemical and physical properties of soil clean the water by removing contaminants. Soil is perhaps the largest single water (and wastewater) treatment plant in the world. Soil helps keep our drinking water clean by filtering it.
Soils are essential to plants and provide many of the nutrients they need to grow. In soils lacking adequate amounts of nutrients for crop production, we add some to ensure growth and a reliable food supply. These nutrients are then stored in the soil until the plant needs them. In this way soil acts as a nutrient reservoir for plant growth and survival.
Soil also provides critical support for the plant roots that anchor the plant to prevent it from falling down, being washed away or blown over. Soil also holds water in its pores. The water stored in the pores is removed by plant roots as needed for the plant to grow and photosynthesize.
To protect life we must protect soil
Soil connects us all. We need it to survive. As we move through 2015, the International Year of Soils, remember that if you know soil you know life, and with no soil there would be no life.
More information:
IYS is based around 12 monthly themes to reflect the diverse values of soils: information on these is available here. The SSSA also has a YouTube channel exploring the importance of soil, and a blog.
I grew up with a lot of music in my home. My mother is a voice teacher and we had a constant stream of students filling our house with scales, show tunes, and arias. I wish I could say that as a teenager I graciously accepted music’s place in my home and regularly took advantage of my mom’s expertise, but I didn’t. I instead tried to drown out the incessant singing by watching re-runs of Dragon-Ball Z and playing after-school sports.
So it is ironic that as a scientist I would find myself drawn back to music in order to communicate the importance of plant science research to those outside of academic circles. This communication is made possible through the Sounds of Science, a collaboration between plant scientists and music composition students.
What does plant science sound like?
The premise of Sounds of Science is simple. More people go to music concerts than lectures, so what if we made a lecture more like a concert?
To make our science into music we handed our primary research data to a group of talented music composition students at the University of Illinois (USA) and told them to create. The end results were varied compositions that reflected the nuance of the science in surprising ways. The culmination of the collaboration was a concert, at which we scientists talked about the importance of our work, before debuting the composition.
Our first year’s performance featured piano and flute duets, electronic experiences, and even a photosynthesis rap. The performance was well attended and the concert was even broadcast via public television to over 40,000 households in central Illinois.
Some of the end results were surprising, and perhaps not what the scientists had imagined. However, transforming data into music attached more emotion to the science, and proved a fantastic way to highlight the importance of the plant sciences.
Going Further
Thanks to the success of this project, we are expanding the collaboration into a yearly event. Like any good concert, we are trying to create an integrated experience from the time you sit down to the time you applaud. Think of it as a cross between a TED talk and a good movie. I hope to keep you updated with how it turns out in the fall.
But music can’t just be written about! If you’ve enjoyed the highlights video above and have an hour to spare get the full experience here:
I hope that the project will illustrate what plants can do for us, and how we are using what we know about plants to not only fill textbooks, but to make the world a better place.
Postdoc Berkley Walker is a Research Associate with the United States Department of Agriculture–Agricultural Research Service (USDA–ARS) at the University of Illinois. He received his undergraduate degree in microbiology from Brigham Young University and his PhD from Washington State University under Asaph Cousins. Berkley believes that a scientist’s job is to find answers to big questions, then communicate them clearly to the public they serve. His current big problem is trying to understand why many crop plants are only able to use 2% of the sun’s energy to grow and what we might be able to do to improve that percentage. He investigates this problem using a combination of physiological measurements and modeling both in the lab and in the field. To improve science communication, Berkley founded the Sounds of Science Collaboration where plant scientists are paired with composers to produce original works of music from primary research data.
We find Twitter a great way to share links, news, journal articles and conference updates, while also networking with the global plant science community. Join over 1000 other plant scientists and enthusiasts and follow us, if you’re not already!
If you’re not sure where to start with Twitter, Mary Williams from ASPB (@PlantTeaching) has written a great two-part blog (we feature in Part 1! And here’s Part 2) that will help you get started and understand the ‘twetiquette’ of tweeting, especially from conferences.
Although Facebook is by far the most popular social networking site across the globe, the way we use it has evolved dramatically since its inception in 2004. ‘Thefacebook’ as it was first known, was famously founded by Harvard University student Mark Zuckerberg as a way for his fellow students to view and comment on photographs of their dorm-mates. Initially restricted to Harvard, the website soon expanded to universities across the US, then the world, and now almost anyone can use it, even without an academic email address.
But Facebook has moved on from its early days and it’s now not all about ‘poking’ your friends (remember that?!). Now worth billions of dollars, Facebook has morphed into an all-encompassing platform for both recreation and business. While many people still use Facebook to keep in touch with friends and family, share photos and status updates, it’s also increasingly being used to share news, articles and opinions, to play games, form groups or communities, and as a tool for companies and organizations to interact with and advertise to customers or members.
At the Society for Experimental Biology conference in Prague in June, I heard several scientists extolling the benefits of social media, particularly – and perhaps unsurprisingly – in the Education and Outreach sessions. I was particularly interested to repeatedly hear the message that Facebook is a very useful tool for science communication and outreach – so we’ve decided to try it!
Why bother with Facebook as well as other social media channels?
Having only ever used Facebook for personal uses, Sarah and I asked some prolific social media users for their advice on starting and using a Facebook page, and in answer to the question, “Why should we bother with Facebook?”, the overwhelming message was clear: Facebook is used by more, different people.
Compared to Twitter, which has around 316 million users, Facebook reached its 1 billionth account in 2012, and while the people we spoke to find that most of their Twitter followers are from English-speaking countries, their Facebook visitors represent a much broader range of geographic locations and languages. Furthermore, unlike setting up and maintaining a website, it’s free to set up Facebook pages or groups, so some organizations only exist on social media. By setting up a Facebook page for the GPC, we should, in theory, be able to interact with more people than we would with just our Twitter accounts and blog, thus we will be able to share and promote plant science all over the world more effectively and to a greater diversity of people.
Here’s a list of some of our Member Organizations who also have a presence on Facebook. Let us know if there are any other pages we should ‘like’! We’re also interested to hear from you if you have any thoughts about using social media, or suggestions of content you would like to see on Facebook. How do you use Twitter and Facebook, and how does your use of these channels differ, if at all? Please comment below!
Armed with a banner, a new batch of hot-off-the-press leaflets, some of our infamous GPC recycled paper pens, and a map of the world, the purpose of my trip was to staff an exhibitor’s booth at the conference to help raise awareness of the GPC and the projects and initiatives we are involved with.
To encourage delegates to speak to the exhibitors, there was a chance to win prizes in exchange for a ‘passport’ filled with stickers or stamps collected from each of the booths. This gave me a fantastic opportunity to meet people from all over the world and tell them about the Global Plant Council – even the SEB’s Animal and Cell biologists!
Many visitors to the booth were from Europe, but I also met people from as far away as Argentina, Australia, China and Vietnam. Thanks to everyone who visited the booth and gave me their email addresses to sign up for our monthly e-Bulletin newsletter!
“So what does the Global Plant Council actually do?”
This was the question I was most frequently asked at the conference. The answer is: many things! But to simplify matters, our overall remit falls into two main areas.
1) Enabling better plant science
Visitors to our booth at SEB 2015 were asked to put their plant science on the map!
Plant science has a critical role to play in meeting global challenges such as food security, hunger and malnutrition. The GPC currently has 29 member organizations, including the SEB, representing over 55,000 plant, crop, agricultural and environmental scientists around the world. By bringing these professional organizations together under a united global banner, we have a stronger voice to help influence and shape policy and decision-making at the global level. Our Executive Board and member organization representatives meet regularly and feed into international discussions and consultations.
The GPC also aims to facilitate more effective and efficient plant-based scientific research. Practically speaking, this means we organize, promote, provide support for, and assist with internationally collaborative projects and events. A good example is the Stress Resilience Symposium and Discussion Forum we are hosting, together with the SEB, in Brazil in October.
This meeting – which will be a satellite meeting of the International Plant Molecular Biology 2015 conference – will bring together scientists from across the world who are studying the mechanisms by which plants interact with and respond to their environments, particularly in the face of climate change. It will provide an excellent opportunity for researchers of all levels and from different regions to network and learn from each other, fostering new relationships and collaborations across borders. Registration and abstract submission is now open, so why not come along!
Importantly, as well as learning from researchers all over the world about the fantastic research they are doing, we also want to identify important research that is not being done, or which could be done better. Then, we can come together to discuss strategies to fund and fill these gaps.
As well as physically bringing people together at meetings and events, the Global Plant Council aims to better connect plant scientists from around the world, promote plant research and funding opportunities, share knowledge and best practice, and identify reports, research tools, and educational resources.
Plant scientists have created an amazing diversity of assets for research and education, so by facilitating access to and encouraging use of these resources, we hope that a desperately needed new generation of plant researchers will be inspired to continue working towards alleviating some of the world’s most pressing problems. For example, we’re translating plant science teaching materials into languages other than English, and are helping the American Society of Plant Biologists to curate content for Plantae.org, an online resource hub and gathering place for the plant science community that will be launched later this year – stay tuned!
My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.