Tag

SciDev Archives - The Global Plant Council

Potatoes, allies on Earth and on Mars

By | Blog, Future Directions

By
Zoraida Portillo (Perú)

[LIMA] A joint initiative between NASA and the International Potato Centre (CIP), which is based in Peru, offers scientific evidence that it is possible to grow at least four types of potatoes on Mars.

A scenario starring the root crop was portrayed in the movie “The Martian” (2015), in which a lost astronaut, played by Matt Damon, survives on potatoes he cultivates on the red planet while awaiting rescue.

But in addition to this interplanetary possibility, scientists also observed the crop is genetically suited to adapting to the changes creating more adverse environmental conditions on Earth.

So before turning fiction into reality, the tuber has a mission on Earth.

The hardy potato quartet

The study has identified four types of potatoes, out of 65 examined, which have shown resistance to high salinity conditions and were able to form tubers in a type of soil similar to that on Mars.
One of these is the Tacna variety, developed in Peru in 1993. It was introduced to China shortly afterwards, where it showed high tolerance to droughts and saline soils with hardly any need for irrigation.

This variety became so popular in China that it was ‘adopted’ in 2006 under the name of Jizhangshu 8. The same high tolerance was seen on the saline and arid soils of Uzbekistan, a country with high temperatures and water shortages, where the variety was also introduced and renamed as Pskom.

The second variety that passed the salinity test is being cultivated in coastal areas of Bangladesh that have high salinity soils and high temperatures. The other two types are promising clones — potatoes that are being tested for attributes that would make them candidates for becoming new varieties.

These four potato types were created as a result of the CIP’s breeding programme to encourage adaptation to conditions in subtropical lowlands, such as extreme temperatures, which are expected to be strongly affected by climate change.

Down to Earth

In addition to these four potato ‘finalists’, other clones and varieties have shown promising results when tested in severe environmental conditions. The findings offer researchers new clues about the genetic traits that can help tubers cope with severe weather scenarios on Earth.

“It was a pleasant surprise to see that the potatoes that we have improved to tolerate adverse conditions were able to produce tubers on this soil [soil similar to that on Mars],” says Walter Amorós, CIP potato breeder and one of the five researchers involved in the project, who has studied potatoes for more than 30 years.

According to Alberto García, adviser to the UN Food and Agriculture Organization in Peru who is in charge of food security programmes, this experiment “serves to verify that potato, a produce of great nutritional value, is a crop extremely adaptable to the worst conditions”, something that is very relevant for current climate scenarios.

García stresses that global temperatures are now rising at a rate higher than expected, affecting not only potatoes but also other crops. Many now need to be cultivated at higher altitudes — which, he says, is not always a disadvantage and may even be beneficial for crops that were previously cultivated in valleys.

“But it can also have negative consequences that we have to anticipate,” adds García. Therefore, he says this experiment can inspire others to think about future scenarios and look for other crops than can adapt to extreme conditions that will have an impact on agriculture.

Similar to Mars

The project began with a search for soils similar to that found on Mars. Julio Valdivia-Silva, a Peruvian researcher who worked at NASA’s Ames Research Center, eventually concluded that the soil samples collected in the Pampas de la Joya region of southern Peru were the most similar to Martian soil.

Arid, sterile and formed by volcanic rocks, these soil samples were extremely saline.

Helped by engineers from the University of Engineering and Technology (UTEC) in Lima and based on designs by NASA’s Ames Research Center, the CIP built CubeSat — a miniature satellite that recreates, in a confined environment, a Martian-like atmosphere. This is where the potatoes were cultivated.

“If potatoes could tolerate the extreme conditions to which we exposed them in our CubeSat, they have a good opportunity to develop on Mars,” says Valdivia-Silva.

They then conducted several rounds of experiments to find out which varieties could better withstand the extreme conditions, and what minimum conditions each crop needed to survive.

CubeSat, hermetically sealed, housed a container with La Joya soil, where each one of the tubers was cultivated. CubeSat itself supplied water and nutrients, controlled the temperature according to that expected at different times on Mars, and also regulated the planet’s pressure, oxygen and carbon dioxide levels.

Cameras were installed to record the process, broadcasting developments on the soil and making it possible to see the precise moment in which potatoes sprouted.

Based on the results, CIP scientists say that in order to grow potatoes on Mars, space missions will have to prepare the soil so it has a loose structure and contains nutrients that allow the tubers to obtain enough oxygen and water.

In a next phase of the project, the scientists hope to expose successful varieties to more extreme environmental conditions. This requires, among other things, developing a prototype satellite similar to CubeSat that can replicate more extreme conditions with greater precision, at a price tag of US$ 100,000.

This piece was produced by SciDev.Net’s Latin America and Caribbean desk.

This article was originally published on SciDev.Net. Read the original article.

Climate change to push Ethiopian coffee farming uphill

By | Blog, Global Change

This article was republished from SciDev.Net.

By Baraka Rateng’

Relocating coffee areas, along with forestation and forest conservation, to higher altitudes to cope with climate change could increase Ethiopia‘s coffee farming area fourfold, a study predicts.

The study, published in Nature last month (19 June), suggests that moving Ethiopian coffee fields to higher ground because of climate change could increase resilience by substantially increasing the country’s suitable production area.

Justin Moat, spatial analyst at the UK’s Royal Botanic Gardens Kew, and lead author of the study, says that currently coffee farming is mainly confined to altitudes between 1200 and 2200 metres.

“A critical factor in the suitability of coffee farming is the interaction between rainfall and temperature.”

Justin Moat

“In general, coffee’s niche will move uphill to keep to optimal temperature,“ he tells SciDev.Net. “Much work would be needed to achieve this if planning starts now.”

According to Moat, up to 60 per cent of the country‘s current production area could become unsuitable before the end of the century.

Ethiopia, he says, is the world’s 5th largest coffee producer. The crop provides a quarter of export earnings, and approximately 15 million Ethiopians engage in coffee farming and production.

The study‘s results were based on computer modelling and simulations. “We determined coffee-preferred climate (niche) using a huge amount of data collected on the ground, including historic observations, overlaid on climate maps,” explains Moat.

They projected this niche into the future using climate models and scenarios, which revealed that all the models were in general agreement. They then combined this with satellite imagery to come up with the present-day forest coffee area, and the area projected in the future.

Higher altitudes are forecast to become more suitable for coffee while lower altitudes are projected to become less suitable, according to the study.

“A critical factor in the suitability of coffee farming is the interaction between rainfall and temperature; higher temperatures could be tolerated if there was an increase in rainfall,” Moat notes.

He adds that regardless of interventions, one of the country‘s best known coffee-growing regions — Harar, in eastern Ethiopia — is likely to disappear before the end of the century.

Shem Wandiga, a professor of chemistry at the University of Nairobi’s Institute for Climate Change Adaptation, Kenya, says that although the study cannot predict with full certainty, it holds important messages for policymakers.

“Start planning to expand coffee growing areas to higher elevation, he suggests. “The expansion should be coupled with forestation of the areas.“

Copyright: Panos

Researchers and policymakers should also map out the human, social and ecological conditions that may allow such expansion, according to Wandiga. Also, farmers should slowly substitute coffee with other plants that may bring income.

William Ndegwa, Kitui County director at the Kenya Meteorological Department, says the model used in the research is a powerful tool for linking climate variables with biological parameters.

“This is a very interesting [study] with deep insights into the characteristics of the impacts of climate change on crop production,” he notes.

This piece was produced by SciDev.Net’s Sub-Saharan Africa-English desk.

This article was originally published on SciDev.Net. Read the original article.

Brazil’s transgenic sugarcane stirs up controversy

By | Blog, Research

By Luisa Massarani

This article was originally published on SciDev.Net. Read the original article.

[RIO DE JANEIRO] A genetically modified (GM) cane variety that can kill the sugarcane borer (Diatraea saccharalis) has been approved in Brazil,  to the delight of some scientists and the dismay of others, who say it may threaten Brazilian biodiversity.

Brazil is the second country, after Indonesia, to approve the commercial cultivation of GM sugarcane. The approval was announced by the Brazilian National Biosafety Technical Commission (CTNBio) on June 8.

Sugarcane borer is one of the main pests of the sugarcane fields of South-Central Brazil, causing losses of approximately US$1.5 billion per year.

“Breeding programmes could not produce plants resistant to this pest, and the existing chemical controls are both not effective and severely damaging to the environment,” says Adriana Hemerly, a professor at the Federal University of Rio de Janeiro, in an interview with SciDev.Net.

“Studies conducted outside Brazil prove that protein from genetically modified organisms harms non-target insects, soil fauna and microorganisms.”

Rogério Magalhães

“Therefore, the [GM variety] is a biotechnological tool that helps solve a problem that other technologies could not, and its commercial application will certainly have a positive impact on the productivity of sugarcane in the country.”

Jesus Aparecido Ferro, a member of CTNBio and professor at the Paulista Júlio de Mesquita Filho State University, believes the move followed a thorough debate that began in December 2015 — that was when the Canavieira Technology Center (Sugarcane Research Center) asked for approval to commercially cultivate the GM sugarcane variety.

“The data does not provide evidence that the cane variety has a potential to harm the environment or human or animal health,” Ferro told SciDev.Net.

To develop the variety, scientists inserted the gene for a toxin [Cry] from the bacterium Bacillus thuringiensis (Bt) into the sugarcane genome, so it could produce its own insecticide against some insects’ larvae.

This is a technology that “has been in use for 20 years and is very safe”, says Aníbal Eugênio Vercesi, another member of the CTNBio, and a professor at the State University of Campinas.

But Valério De Patta Pillar, also a member of the CTNBio and a professor at the Federal University of Rio Grande do Sul, points to deficiencies in environmental risk assessment studies for the GM variety — and the absence of assessments of how consuming it might affect humans and animals.

According to Pillar, there is a lack of data about the frequency with which it breeds with wild varieties. Data is also missing on issues such as the techniques used to create the GM variety and the effects of its widespread use.

Rogério Magalhães, an environmental analyst at Brazil’s Ministry of the Environment, also expressed concern about the approval of the commercial transgenic cane.

“I understand that studies related to the impacts that genetically modified sugarcane might have on Brazilian biodiversity were not done by the company that owns the technology,” said Magalhães in an interview with SciDev.Net. This is very important because Brazil’s climate, species, and soils differ from locations where studies might have taken place, he explained.

Among the risks that Magalhães identified is contamination of the GM variety’s wild relatives. “The wild relative, when contaminated with transgenic sugarcane, will have a competitive advantage over other uncontaminated individuals, as it will exhibit resistance to insect-plague that others will not have,” he explained.

Another risk that Magalhães warns about is damage to biodiversity. “Studies conducted outside Brazil prove that Cry protein from genetically modified organisms harms non-target insects, soil fauna and microorganisms.”

Magalhães added that some pests have already developed resistance to the Bt Cry protein, prompting farmers to apply agrochemicals that are harmful to the environment and human health.

This piece was originally published by SciDev.Net’s Latin America and Caribbean desk.

 

This article was originally published on SciDev.Net. Read the original article.

Genetics to boost sugarcane production

By | Blog, Future Directions

Scientists in Brazil are taking steps towards genetically modifying sugar cane so it produces more sucrose naturally, looking to eventually boost the productivity and economic benefits of the tropical grass.

A man stacks sugarcane at the Ver-o-Peso (Check the Weight) market in Belem.

Currently, it is common for producers to raise sucrose levels in sugar cane by applying artificial growth regulators or chemical ripeners. This inhibits flowering, which in turn prolongs harvest and milling periods.

One of these growth regulators, ethephon, is used to manage agricultural, horticultural and forestry crops around the world. It is widely used to manipulate and stimulate the maturation of sugarcane as it contains ethylene, which is released to the plant on spraying.

Ethylene, considered a ripening hormone in plants, contributes to increasing the storage of sucrose in sugar cane.

“Although we knew ethylene helps increase the amount of sugar in the cane, it was not clear how the synthesis and action of this hormone affected the maturation of the plant,” said Marcelo Menossi, professor at the University of Campinas (Unicamp) and coordinator of the project, which is supported by the Brazilian research foundation FAPESP.

To study how ethylene acts on sugarcane, the researchers sprayed ethephon and an ethylene inhibitor, aminoethoxyvinylglycine (AVG), on sugar cane before it began to mature.
sucrose accumulation.jpg

After spraying both compounds, they quantified sucrose levels in tissue samples from the leaves and stem of the cane. They did this five days after application and again 32 days later, on harvest.

Those plants treated with the ethephon ripener had 60 per cent more sucrose in the upper and middle internodes at the time of harvest, while the plants treated with the AVG inhibitor had a sucrose content that was lower by 42 per cent.

The researchers were then able to identify genes that respond to the action of ethylene during ripening of the sugar cane. They also successfully identified the genes involved in regulating sucrose metabolism, as well as how the hormone acts on sucrose accumulation sites in the plant.

Based on the findings, the team has proposed a molecular model of how ethylene interacts with other hormones.

“Knowing which genes or ripeners make it possible for the plant to increase the accumulation of sucrose will allow us to make genetic improvements in sugarcane and develop varieties that over-express these genes, without the need to apply ethylene, for example,” explained Menossi.

This research could also help with spotting the most productive sugar cane, as some varieties that do not respond well to hormones, he added. “It will be possible to identify those [varieties] that best express these genes and facilitate the ripening action.”

Taken from a newsletter by FAPESP, a SciDev.Net donor, edited by our Latin America and the Caribbean desk

 

This article was originally published on SciDev.Net. Read the original article.

Rise in groundwater overuse could hit food prices

By | Blog, Future Directions

By Neena Bhandari

[SYDNEY] The increasing use of groundwater for irrigation poses a major threat to global food security and could lead to unaffordable prices of staple foods. From 2000 to 2010, the amount of non-renewable groundwater used for irrigation increased by a quarter, according to an article published in Nature on March 30. During the same period China had doubled its groundwater use.

The article finds that 11 per cent of groundwater extraction for irrigation is linked to agricultural trade.

“In some regions, for example in Central California or North-West India, there is not enough precipitation or surface water available to grow crops like maize or rice and so farmers also use water from the underground to irrigate,” the article says.

“When a country imports US maize grown with this non-renewable water, it virtually imports non-renewable groundwater.”

Carole Dalin,  Institute for Sustainable Resources at University College, London

The article focused on cases where underground reservoirs or aquifers, are overused. “When a country imports US maize grown with this non-renewable water, it virtually imports non-renewable groundwater,” Carole Dalin, lead author and senior research fellow at the Institute for Sustainable Resources at University College, London, tells SciDev.Net.

Crops such as rice, wheat, cotton, maize, sugar crops and soybeans are most reliant on this unsustainable water use, according to the article. It lists countries in the Middle East and North Africa as well as China, India, Mexico, Pakistan and the US as most at risk.

“Pakistan and India have been locally most affected due to groundwater depletion and exporting agricultural products grown with non-sustainable groundwater. Iran is both exporting and importing and The Philippines is importing from Pakistan, which is non-sustainable. China is importing a lot from India. Japan and Indonesia are importing, mainly from the US,” says Yoshihide Wada, co-author of the report and deputy director of the International Institute for Applied Systems Analysis’s Water Programme, Laxenburg, Austria.

Agriculture is the leading user of groundwater, accounting for more than 80 to 90 per cent of withdrawals in irrigation-intense countries like India, Pakistan and Iran, according to the report.

The researchers say efforts to improve water use efficiency and develop monitoring and regulation need to be prioritised. Governments must invest in better irrigation infrastructure such as sprinkler irrigation and introduce new cultivar or crop rotation to help producers minimise water use.

Wada suggests creating awareness by putting water labels, along the lines of food labels, “showing how much water is used domestically and internationally in produce and whether these water amounts are from sustainable or non-sustainable sources”.

Andrew Western, professor of hydrology and water resources at the University of Melbourne’s School of Engineering, suggests enforceable water entitlement systems and caps on extraction. “In recent decades, water reform in Australia has led to water having a clear economic value made explicit by a water market. This has enabled shifts in water use to cope with short-term climate fluctuations and has also driven a trend of increasing water productivity,” he says.

This piece was produced by SciDev.Net’s Asia & Pacific desk.

 

This article was originally published on SciDev.Net. Read the original article.

Water is key to ending Africa’s chronic hunger cycle

By | Blog, Global Change

By Esther Ngumbi

For Africa to end chronic hunger, governments must invest in sustainable water supplies.

The fields are bare under the scorching sun and temperatures rise with every passing week. Any crops the extreme temperatures haven’t destroyed, the insect pests have, and for many farmers, there is nothing they can do. Now, news about hunger across Africa makes mass media headlines daily.

Globally, hunger levels are at their highest. In fact, according to the Famine Early Warning Systems Network, over 70 million people across 45 countries will require food emergency assistance in 2017, with Africa being home to three of the four countries deemed to face a critical risk of famine: Nigeria, South Sudan, Sudan and Yemen. African governments, non-governmental organisations (NGOs) and humanitarian relief agencies, including the United Nations World Food Programme, continue to launch short-term solutions such as food relief supplies to avert the situation. Kenya, for example, is handing cash transfers and food relief to its affected citizens. The UN World Food Programme is also distributing food to drought-stricken Somalia. And in Zambia, the government is employing every tool including its military to combat insect pest infestation.

But why are we here? What happened? Why is there such a large drought?

Reasons for chronic hunger

Many African smallholder farmers depend on rain-fed agriculture, and because last year’s rains were inadequate, many farmers never harvested any crops.

Indeed, failed rains across parts of the Horn of Africa have led to the current drought that is affecting Somalia, south-eastern Ethiopia and northern and eastern Kenya.

Then, even in the countries where adequate rains fell, many of the farmers had to farm on depleted soils, and consequently, the yields were lower. Degraded soils and dependence on rain-fed agriculture coupled with planting the wrong crop varieties are some of the fundamental problems that lead to poor harvests and then to hunger. Worsening the situation is the unpredictable climate. Given these fundamental and basic issues that fuel the hunger cycle in Africa, it naturally makes sense to tackle them.

It is not rocket science. Farming goes hand-in-hand with water. There can be no farming without it. While this seems easy to reason, there are few organisations working to make sure that African farmers and citizens have access to permanent water sources. Access to water sources all year round would ensure that farmers can farm year in and year out.

What African governments must do

African governments must, therefore, invest in ensuring that their citizens have access to water. Measures that can be implemented include drilling and rehabilitating boreholes, creating reservoirs and irrigation systems, constructing hand-pumps and implementing water harvesting schemes. Such measures would go a long way and ensure that countries continue to face the same problem both in the short and long term periods.

“If Africa wants to end the recurring droughts, hard decisions must be made.”

Esther Ngumbi, Auburn University in Alabama. United States

Of course it is understandable that it can be hard to choose long-term solutions such as ensuring that citizens have access to permanent water sources year round over investing in short-term solutions when there are people who need help now.

Acknowledging this dilemma, Mitiku Kassa, the Ethiopia’s commissioner for disaster risk management, is reported to have described how hard it was to direct even a fifth of his budget towards well drilling. But such decisions must be made. The Ethiopian government still made that tough decision and sunk hundreds of bore wells throughout the country.

There is a great need to ramp up water harvesting and conservation efforts across the African continent. African governments and other stakeholders need to increase investment in multiple water-storing techniques. Such techniques include rain and flood water harvesting and the construction of water storage ponds and dams. But there should be no need to reinvent the wheel.

Time to learn from others

African countries can learn from other countries. Countries in the developed world have sustained their agriculture efforts by either drilling water wells to ensure they have access to the water they need for farming or by investing in rain and flood water harvesting. In California, for example, there have been a rise in the number of wells being drilled by farmers who use well water for farming. In 2016 alone, farmers in the San Joaquin Valley dug about 2,500 wells, a number that was five times the annual average reported in the last 30 years.

Countries such as Bangladesh, China, India, Myanmar, Sri Lanka and Thailand have made progress and are working on pilot projects that capture, harvest and store flood water. Stored water is then available for use by communities when they need it the most. Harvesting and storing water and making it available for agriculture, especially during the dry seasons, will allow citizens and smallholder farmers to farm throughout the year. These would further improve the resilience of farmers to the unpredictability of climate change.

If Africa wants to end the recurring droughts, hard decisions must be made. By addressing the fundamental and basic issues of long-term availability of water for agriculture, African countries can once and for all end this never-ending cycle of hunger.

Esther Ngumbi is a postdoctoral researcher at the Department of Entomology and Plant Pathology at Auburn University in Alabama, United States. She serves as a 2015 Clinton Global University (CGI U) Mentor for Agriculture and is a 2015 New Voices Fellow at the Aspen Institute. 

This piece was produced by SciDev.Net’s Sub-Saharan Africa English desk.

 

References

Humphrey Nkonde Dramatic threat to maize harvest (Development and Cooperation, 6 March 2017)
Mohammed Yusuf UN: 17 Million People Face Hunger East Africa (Voice of America, 8 March 2017)
Karen McVeigh Somalia famine fears prompt UN call for ‘immediate and massive’ reaction (the Guardian, 3 February 2017)
Emergency food assistance needs unprecedented as Famine threatens four countries (Famine Early Warning Systems Network, 25 January 2017)
Kazungu Samuel Kenya: Red Cross Comes to the Aid of Drought-Hit Kilifi Residents (allAfrica, 2017)
Army worms invades Zambia’s farms (Azania Post, 6 February 2017)
Lesson learned? An urgent call for action in response to the drought crisis in the horn of Africa (Inter Agency Working Group on Disaster Preparedness for East and Central Africa, 2017)
Amanda Little The Ethiopian Guide to Famine Prevention (Bloomberg Business Week, 22 December 2016)
Central Valley farmers drill more, deeper wells as drought limits loom (CBS SF Bay Area, 15 September 2016)
Underground taming floods for irrigation(International Water Management Institute, 2017)

 

This article was originally published on SciDev.Net. Read the original article.

Break down barriers between seed banks and field study

By | Blog, Future Directions

By Marie Haga , Ann Tutwiler

Food biodiversity needs both systems, just like pandas need zoos and bamboo forests, say Marie Haga and Ann Tutwiler.

The efforts of many organisations mean that most of us understand the importance of conserving the biodiversity of wild animals and their habitats.  But few of us think about food in the same way we think about pandas, even though the issues are much the same.

The effective and efficient conservation of agricultural biodiversity — the biodiversity that’s important for providing the food we eat — is vital to meeting the global challenges of food and nutritional security for an expanding world population under the threat of climate change, and growing pressures on land and water.

And as with pandas and other wild animals, conservation of agricultural biodiversity can and must be done both in the laboratory and in the field.

From pandas to seeds

If you had a choice, would you rather see a panda in a zoo, or in the bamboo forests of southern China?

For most of us, seeing wild and endangered animals in their own habitat and watching how they behave, adapt and survive in their natural surroundings would be the preferred choice. But, the role of zoos in conserving wild and endangered animals is equally important.

Many zoos are home to breeding programmes. These can help re-introduce animals into wild areas from which they have disappeared, and maintain the genetic diversity of small populations of threatened species.  Zoos that are well-run carry out vital conservation research and can increase public support for conservation. And the only chance that most of us (and our kids) will have to see a panda is in a zoo.

Much in the same way, and for several decades now, dedicated researchers around the world have invested a great deal of effort in collecting and storing the seeds of different varieties of crops in genebanks, for what’s called ex situ conservation. Their collective work has created a precious global collection of over seven million seed, tissue, and other samples in many global and national genebanks.

“The problem is that systems of in situ and ex situ conservation have been largely disconnected for some time. Some conservationists even see them as antagonistic.

And while devotees of one side argue with the other, the diversity that underpins the food we eat is lost both in genebanks and in farmers’ fields.”

Marie Haga and Ann Tutwiler

At the same time, some concerns that apply to zoos — that they cannot maintain the evolutionary dynamics which allow ‘wild’ animals to evolve and adapt, for example — also apply to seed banks.

Researchers are increasingly recognising that in situ conservation is also important: maintaining crop and livestock diversity in farmers’ fields and farms, gardens, orchards, and the natural landscapes in which these are embedded.

A call for collaboration

Ex situ and in situ conservation each has their benefits.

It is relatively cheap to maintain crop diversity in a genebank, where it is safe from the vagaries of changing climates, and is readily accessible for research and breeding. But crop diversity stored in genebank is less accessible to farmers, and is not exposed to changing environments — which means it does not evolve and adapt.

On the other hand, crop diversity in farmers’ fields and under other in situ conditions, continues to evolve and adapt as a result of natural and human selections.  As it evolves and adapts, this genetic diversity contributes directly to the resilience and sustainability of agricultural systems, as well as to farmers’ livelihoods and to their empowerment. But there’s a downside: it is more difficult for breeders to use in their crop improvement programmes.

This shouldn’t be about choosing one over the other — the world needs both conservation systems, with good communication channels and knowledge transfer between them. This will help to properly conserve the genepools of crops and make them available for use into the future, for food and nutritional security.

The problem is that systems of in situ and ex situ conservation have been largely disconnected for some time. Some conservationists even see them as antagonistic.

And while devotees of one side argue with the other, the diversity that underpins the food we eat is lost both in genebanks and in farmers’ fields.

Crop diversity in farmer’s fields continues to decline in many parts of the world, often driven by market forces beyond the control of farmers’ themselves. Diversity is also lost from genebanks — a shortage of funding and staff means collections are often poorly maintained.

But if we stop looking at these two forms of conservation as antagonistic but rather as complementary, attention can be focused on what matters most: how best to safeguard this diversity for the future.

First steps

The First International Agrobiodiversity Conference is an opportunity to begin anew. That’s why practitioners in all these fields, from all over the world, both industrialized and developing, and from both the formal and informal sector, are coming together in New Delhi, India this week.

This congress gives conservation and agro-biodiversity experts and policy makers the opportunity to start mapping out a future that breaks down barriers between the two approaches, integrating them to ensure global food and nutritional security.

Most importantly, this means helping politicians and the public understand that conserving the diversity of our food is just as important as conserving the diversity of wild animals.

The congress is a first step in the right direction.

Marie Haga is executive director of The Crop Trust, and Ann Tutwiler is director general of Bioversity International. Haga can be contacted on Twitter at @CropTrust, and Tutwiler at @AnnTutwiler

 

This article was originally published on SciDev.Net. Read the original article.