Tag

plant science Archives - Page 7 of 83 - The Global Plant Council

Researchers fill new final gaps in the Arabidopsis genome sequence

By | News, Plant Science

A new study unveils the intricate organization and regulation of ribosomal RNA genes within the complete nucleolus organizer regions (NORs) of Arabidopsis, the first plant with a fully sequenced genome. The research identifies over 70 gene subtypes distributed between NOR2 and NOR4, shedding light on their activation and silencing patterns. The findings, crucial for comprehending NOR epigenetic control, hold broad biomedical relevance and offer a platform for future investigations into NOR evolution.

Read More
Image: Native Eucalyptus forest growing in the field site located in Cleland Conservation Park - the largest conservation reserve used in the study (1027.47 ha). Credit: A Blackall (Flinders)

Night study of native plant survival

By | Botany, News

With land clearance, bushfires, weeds and climate change, small pockets of native vegetation are important for future plant and animal conservation – but do plants in small reserves struggle with reduced habitat for both plants and their pollinators?

Read More

Join the International “Fascination of Plants Day” around May 18, 2024 – a global celebration of plants!

By | Blog, Policy

The European Plant Science Organisation (EPSO) jointly with over 60 National Coordinators across the globe proudly announce the launch of the seventh edition of the Fascination of Plants Day (FoPD), scheduled to take place on and around May 18, 2024. A celebration of the captivating world of plants, FoPD invites individuals of all ages to engage in plant-based interactive events and activities organised by scientific institutions, universities, botanical gardens, museums, schools, farmers, and companies worldwide.

Read More

Measuring the impact of desert greening

By | Climate change, KAUST, News, Plant Science

Satellite data reveals a significant cooling impact of vegetation on land surface temperature in the Arabian Peninsula. The study underscores the potential of greening dry areas to mitigate heat stress. The balance between increased evapotranspiration and reduced albedo determines outcomes, emphasizing the need for sustainable water management in climate change adaptation.

Read More
Image: Mutations in plant DNA can be observed as mild effects in some "variegated" plants, where leaves become bleached and lose the ability to photosynthesize (see image). While this may be beautiful in your garden, it is not beneficial for crops. Credit: Iain George Johnston

New findings on plants’ ingenious defense against mutational damage

By | News, Plant Science

Plants avoid mutational damage buildup by leveraging randomness in a process called segregation. Unlike passing on the same mutation to all offspring, plants distribute inherited damage randomly, with some offspring inheriting more mutations than others. This segregation process, faster in plants than in humans, holds agricultural promise. Understanding how plants handle mutational variations in their DNA could aid crop breeders in introducing beneficial mutations for enhanced yield. The study’s findings advance knowledge crucial for crop breeding and yield enhancement.

Read More
Image: Camelina plants growing in short days. These plants got only 56% as much light as plants in long days, but had a relative growth rate that was 84% of that of the long-day plants. Credit: Yuan Xu

Plants’ secret to surviving shorter days

By | MSU-DOE Plant Research Laboratory, News, Plant Science

New research could help breed plants that are more productive as days grow shorter. The research found that when days are shorter, plants have less time to photosynthesize, so they need to be more efficient with the sunlight they do receive. Plants store more sugar as starch during the day so that they have energy to use during the longer night. These findings could help to develop new crop varieties that can grow in a wider range of climates.

Read More
Image: The Sphagnum genus of mosses absorbs carbon from the atmosphere, storing it in peat bogs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Researchers develop new method to analyze proteins in ecologically significant moss

By | Climate change, News, Plant Science

Sphagnum divinum, a resilient type of peat moss, is actively evolving in response to hot, dry conditions, defying climate threats. Researchers developed a database with S. divinum’s proteins and a method to determine their functions, shedding light on its adaptive mechanisms. As environmental stressors deplete peatland carbon reserves, understanding genetic resilience becomes crucial. Using high-performance computing and AI, the team predicted structures for S. divinum’s 25,134 proteins, revealing insights into their functions. The findings advance climate resilience understanding and support future research on Sphagnum moss compounds.

Read More

Unlocking the Power of Peas: Genetic discovery promises high-iron vegetables and cereals

By | Agriculture, News, Plant Science

A genetic breakthrough unveils the high-iron mutations in peas, presenting opportunities for fortified vegetables and cereals. This discovery, based on a newly mapped pea-genome, could guide gene-editing strategies to enhance iron content in various crops, addressing global anaemia concerns, especially among women. The findings illuminate iron homeostasis in plants, offering prospects for biofortification.

Read More

Researchers conduct first-ever study of cultural adaptation to climate change

By | Agriculture, Climate change, News

As climate change intensifies, societal and individual struggles to adapt become more apparent. To explore cultural adaptation, researchers conducted the first study of its kind. Analyzing U.S. crop data over 14 years, they applied the science of cultural evolution. Their findings reveal farmers adapting to climate change in some regions, while in others, crops are increasingly mismatched. This first cultural approach marks a milestone in refining climate adaptation strategies.

Read More
Image: The Amazon Forest seen from the Amazon Tall Tower Observatory, a scientific research facility in the Amazon rainforest of Brazil. Credit: Dr Jess Baker, University of Leeds.

Amazon deforestation linked to long distance climate warming 

By | Forestry, News

New research reveals that deforestation in the Amazon not only warms immediate surroundings but also impacts areas up to 100 kilometers away. Analyzing data from 2001 to 2020, the study links regional forest loss to a significant temperature rise—4.4 °C in areas with both local and regional deforestation. The findings emphasize the critical importance of understanding how Amazon deforestation contributes to climate change and highlight the potential benefits of reducing deforestation for local, regional, and national scales.

Read More