A global shortage of skilled plant breeders threatens food security. With many specialists nearing retirement and fewer graduates entering the field, urgent action is needed to bolster training and ensure the sustainability of agricultural production worldwide.
On the surface, the humble melon may just look like a tasty treat to most. But researchers have found that this fruit has hidden depths: retrotransposons (sometimes called “jumping sequences”) may change how genes are expressed.
Crop hybrid technologies have contributed to the significant yield improvement worldwide in the past decades. However, designing and maintaining a hybrid production line has always been complex and laborious. Now, researchers have developed a new system combining CRISPR-mediated genome editing with other approaches that could produce better seeds compared with conventional hybrid methods and shorten the production timeline by 5 to 10 years.
A team of researchers has developed an innovative software program for the simulation of breeding programmes. The “Modular Breeding Program Simulator” (MoBPS) enables the simulation of highly complex breeding programmes in animal and plant breeding and is designed to assist breeders in their everyday decisions.
By manipulating the expression of one gene, geneticists can induce a form of “stress memory” in plants that is inherited by some progeny, giving them the potential for more vigorous, hardy and productive growth, according to researchers, who suggest the discovery has significant implications for plant breeding. And because the technique is epigenetic — involving the expression of existing genes and not the introduction of new genetic material from another plant — crops bred using this technology could sidestep controversy associated with genetically modified organisms and food.
A protein hijacked from a bacterial pathogen helps to facilitate more precise genome editing in plants. A new genome editing system enhances the efficiency of an error-free DNA repair pathway, which could help improve agronomic traits in multiple crops.
Plant breeding has considerably increased agricultural yields in recent decades and thus made a major contribution to combating global hunger and poverty. At the same time, however, the intensification of farming has had negative environmental effects. Increases in food production will continue to be crucial for the future because the world population and demand continue to grow. A recent study shows that new plant breeding technologies – such as genetic engineering and gene editing – can help to increase food production whilst being more environmentally friendly.
Staying on top of these collections is time-consuming during the best of times, and this task becomes even more complex in the age of social distancing. Yet thousands of scientists across the globe are doing just that, maintaining everything from crickets, to tissue cultures, mice, powdery mildews, nematodes, psyllids, zebrafish and even rust fungi.
Few technologies have made as big a splash in recent years as CRISPR/Cas9, and rightfully so. CRISPR/Cas9, or clustered regularly interspaced palindromic repeats (CRISPR) and associated genes, is a bacterial gene editing toolbox that allows researchers to edit genomic sequences much more precisely and efficiently than previously possible, opening up doors to new ways of doing research. As with many new biotechnologies, the application of CRISPR in biology began with genetic model organisms such as Arabidopsis thaliana. In recent research authors review the prospects for expanding the use of CRISPR for research beyond genetic model plant species.
What if we could grow plants that are larger and also have higher nutritional content? For decades, scientists have been trying to dial up amino acid content in crops by ramping up their production systems, but they always run into the same problem: the crops get sick. Until now.