In plants, the jasmonate (JA) signaling pathway helps plants control their defense responses to environmental stresses. Like the human body, plants respond differently to individual threats. Just as people wouldn’t get a fever due to a sprained ankle, plants deal with harmful elements in particular ways. A study looks at how plants respond to environmental threats in the correct way.
Researchers discovered a form of social immunity in wheat and rice. Disease susceptibility in wheat and rice is modulated not only by genetic resistance traits, but also by interactions with neighbouring plants of the same species. The findings, show that inter-plant cooperation can reduce disease susceptibility by nearly 90 percent in certain cases, as much as is conferred by a plant’s own resistance genes. The findings create new possibilities for improving plant resistance to disease and reducing the use of pesticides.
Maize roots secrete certain chemicals that affect the quality of soil. In some fields, this effect increases yields of wheat planted subsequent to maize in the same soil by more than 4%. While the findings from several field experiments show that these effects are highly variable, in the long term they may yet help to make the cultivation of grains more sustainable, without the need for additional fertilizers or pesticides.
Scientists shed light on how harmful fungi evade recognition by their plant hosts and aid infection.
A total of 57 institutions around the world share their expertise in a ground-breaking study which highlights the urgent need to protect the world’s forests from non-native pests amid climate change.
An international research consortium is developing disease-resistant rice varieties. In the scientific journal eLife, the authors now report on the discovery of a recent bacterial outbreak in Tanzania – and describe how they modified an African rice variety to make it resistant to the pathogen.
Worldwide, farmers are being challenged with a variety of issues, including growing populations, a changing climate and soil degradation, among many others. To combat these challenges, researchers are looking for solutions and have begun to focus their work on the viability of sustainable agriculture practices, like cover crops.
Tomatoes, bananas, cabbages, melons, pumpkins and cucumbers… are just some of the 150 crops of commercial interest that are victims of Fusarium oxysporum, one of the most important pathogens in the world due to the millions of dollars in losses it is responsible for and its ability to attack different types of plants. Although it can go unnoticed in the soil for more than 30 years, when it detects the roots of a host plant, it grows towards them, colonizing its vascular system and causing crops to wilt.
Scientists have warned of the ‘devastating’ impact that fungal disease in crops will have on global food supply unless agencies across the world come together to find new ways to combat infection. Worldwide, growers lose between 10 and 23 per cent of their crops to fungal infection each year, despite widespread use of antifungals. An additional 10-20 per cent is lost post harvest. Academics predict those figures will worsen as global warming means fungal infections are steadily moving polewards, meaning more countries are likely to see a higher prevalence of fungal infections damaging harvests.
Researchers have reconstructed the evolutionary history of a highly specific olfactory receptor in the Egyptian cotton leafworm, a crop pest. This receptor plays an essential role in moth reproduction because it allows males to recognise the female sex pheromone. The scientists determined that the receptor appeared around 7 million years ago and that eight amino acids underlie receptor-pheromone binding. Their findings can guide the development of biocontrol strategies directed against this pest.