Tag

global Archives - The Global Plant Council

Cassava brown streak: lessons from the field

By | Blog, GPC Community

This week’s post was written by Katie Tomlinson, a PhD student at the University of Bristol, UK, who spent three months as an intern at the National Crops Resource Research Institute in Uganda. She fills us in on the important research underway at the Institute, and how they communicate their important results to local farmers and benefit rural communities.  

Over the summer, I had a great time at the National Crops Resources Research Institute (NaCRRI) in Uganda. I’m currently in the second year of my PhD at the University of Bristol, UK, where I’m researching how the cassava brown streak disease (CBSD) viruses are able to cause symptoms, replicate and move inside plants. I was lucky enough to be given a placement at NaCRRI as part of the South West Doctoral Training Partnership Professional Internship for PhD Students (PIPS) scheme, to experience the problem for myself, see the disease in the field, meet the farmers affected and investigate the possible solutions.

 

Cassava brown streak disease

Cassava brown streak disease symptoms on tubers. Image credit: Katie Tomlinson.

 

Cassava is a staple food crop for approximately 300 million people in Africa. It is resilient to seasonal drought, can be grown on poor soils and harvested when needed. However, cassava production is seriously threatened by CBSD, which causes yellow patches (chlorosis) to form on leaves and areas of tubers to die (necrosis), rot and become inedible.

Despite being identified in coastal Tanzania 80 years ago, CBSD has only been a serious problem for Uganda in the last 10 years, where it was the most important crop disease in 2014–2015. The disease has since spread across East Africa and threatens the food security of millions of people.

NaCRRI is a government institute, which carries out research to protect and improve the production of key crops, including cassava. The focus is on involving farmers in this process so that the best possible crop varieties and practices are available to them. Communication between researchers and farmers is therefore vital, and it was this that I wanted to assist with.

 

Scoring cassava brown streak disease

Scoring cassava plants for Cassava brown streak symptoms. Image credit: Katie Tomlinson.

 

When I arrived I was welcomed warmly into the root crop team by the team leader Dr Titus Alicai, who came up with a whole series of activities to give me a real insight into CBSD. I was invited to field sites across Uganda, where I got to see CBSD symptoms in the flesh! I helped to collect data for the 5CP project, which is screening different cassava varieties from five East and Southern African countries for CBSD and cassava mosaic disease (CMD) resistance. I helped to score plants for symptoms and was fascinated by the variability of disease severity in different varieties. The main insight I gained is that the situation is both complex and dynamic, with some plants appearing to be disease-free while others were heavily infected. There are also different viral strains found across different areas, and viral populations are also continually adapting. The symptoms also depend on environmental conditions, which are unpredictable.

I also got to see super-abundant whiteflies, which transmit viruses, and understand how their populations are affected by environmental conditions. These vectors are also complex; they are expanding into new areas and responding to changing environmental conditions.

It has been fascinating to learn how NaCRRI is tackling the CBSD problem through screening different varieties in the 5CP project, breeding new varieties in the NEXTGEN cassava project, providing clean planting material and developing GM cassava.

 

Tagging cassava plants

Tagging cassava plants free from Cassava brown streak disease for breeding. Image credit: Katie Tomlinson.

 

And there’s the human element…

In each of these projects, communication with local farmers is crucial. I’ve had the opportunity to meet farmers directly affected, some of whom have all but given up on growing cassava.

 

Challenging communications

Communicating has not been easy, as there are over 40 local languages. I had to adapt and learn from those around me. For example, in the UK we have a habit of emailing everything, whereas in Uganda I had to talk to people to hear about what was going on. This is all part of the experience and something I’ll definitely be brining back to the UK! I’ve had some funny moments too… during harvesting the Ugandans couldn’t believe how weak I was; I couldn’t even cut one cassava open!

 

Real world reflections

I’m going to treasure my experiences at NaCRRI. The insights into CBSD are already helping me to plan experiments, with more real-world applications. I can now see how all the different elements (plant–virus–vector–environment–human) interact, which is something you can’t learn from reading papers alone!

Working with the NaCRRI team has given me the desire and confidence to collaborate with an international team. I’ve formed some very strong connections and hope to have discussions about CBSD with them throughout my PhD and beyond. It’s really helped to strengthen collaborations between our lab work in Bristol and researchers working in the field on the disease frontline. This will help our research to be relevant to the current situation and what is happening in the field.

 

Some of the NaCRRI team

Saying goodbye to new friends: Dr. Titus Alicai (NaCRRI root crops team leader), Phillip Abidrabo (CBSD MSc student) and Dr. Esuma Williams (cassava breeder). Image credit: Katie Tomlinson.

 

Biofortification

By | Blog, GPC Community

Approaches to biofortification

Biofortification is the improvement of the nutritional value of our crops through both traditional breeding and genetic engineering. Alongside DivSeek and Stress Resilience, biofortification is one of the Global Plant Council’s three main initiatives and will be central to addressing many of the challenges facing world health. However, biofortification doesn’t always involve changing our crops in some way. Often the nutrients we are lacking are present in pre-existing crops. We can biofortify our diets simply by identifying what’s missing and altering our life style accordingly.

Tackling undernourishment

The share

The share (%) of undernourished people per country. From: Max Roser (2015) -‘Hunger and Undernourishment’. Published online at www.OurWorldInData.org

More often that not we intuitively link biofortification with tackling undernourishment in the developing world, and indeed improvements in the diets of deprived communities would be of enormous benefit to global health.

To do this, a key challenge is to increase the nutrient content of staple food crops such as rice in Asia and maize in sub-Saharan Africa. We need to do this in a sustainable and affordable way; ensuring foods are accessible to those who need it. Alongside the fortification of staple crops we need to identify economical crop species that will grow in harsh environments and provide nutrients currently absent from the diet.

Addressing obesity

It is easy to forget that malnutrition is also a problem in developed countries. Worldwide, at least 2.8 million people per year die from obesity-related illnesses, and in 2011 more than 40 million children under the age of five were overweight. Obesity and related health problems such as diabetes, heart disease and certain cancers, place enormous strain on health services, and are partly a function of poor diet lacking in fibre and key phytonutrients. Addressing this is as important as tackling undernourishment, and many of the same principles apply.

Simple lifestyle changes, such as encouraging the consumption of more fruits and vegetables, are clearly a priority. In addition to this dietary change, if we are going to biofortify foods, there should be an emphasis on crops that are already widely consumed.

Purple tomatoes

Professor Cathie Martin

Professor Cathie Martin works at the John Innes Centre researching the link  between diet and health, and how crops could be fortified to improve our diets and global health.

Tomatoes, are one crop plant already eaten widely in the West, commonly found in fast and convenience foods. For this reason they became the focus of the work of Professor Cathie Martin at the John Innes Centre in Norwich, UK. Cathie’s lab has developed a genetically modified tomato that is rich in anthocyanins, making them purple in colour. Anthocyanins are an important dietary component that can have numerous health benefits, including a potentially significant role in the prevention of diseases such as cancer and diabetes. They are the compounds that give some foods, such as blueberries or eggplant, their distinctive blue or purple colouring. Consuming higher quantities could be highly beneficial to health.

“We focused on anthocyanins because of their huge potential health benefits. Pre-clinical studies show that introducing our purple tomatoes into the diet could be an incredibly effective way to protect against diseases such as cancer. Our next steps will be to confirm these findings in human trials,” says Cathie.

However, naturally occurring tomato varieties containing anthocyanins already exist. Wouldn’t it be better to increase consumption of these rather than creating new ones?

“Indeed purple tomatoes do occur naturally. However, these have anthocyanins only in the skin, in quantities too small to make a significant impact on health. Our genetically modified tomatoes have anthocyanins in all tissues,” explains Cathie.

Since developing the purple tomatoes, Cathie, in collaboration with Professor Jonathan Jones, has set up Norfolk Plant Sciences, the UK’s first GM crop company. However, resistance and uncertainty in Europe surrounding GM technology means that progress has been slow.

“The company was founded in 2007 and we are currently working towards the approval of our purple tomato juice in the USA. Producing just the juice rather than the entire fruit means there are no seeds in the final product. This eliminates environmental challenges without compromising health benefits. If the juice proves successful in the USA we may then work towards approval in the UK and Europe.”

It’s not all about Genetic Modification

Of course if we want to make drastic changes to our foods, such as increase anthocyanins in our tomatoes or carotenoids in our rice, GM technology will be a necessity. However, we can go some way to biofortifying our diets without the use of GM.

Golden rice

Golden rice, shown on the left, is a biofortified crop that accumulates high quantities of provitamin A in the grain. This could help tackle Vitamin A Deficiency in developing countries, from which 500,000 children become blind every year, and nine million will die of malnutrition. Photo credit: IRRI photos used under Creative Commons 2.0

Primarily we really need to focus on changing diet and lifestyle. Promoting plants rich in the nutritional components we need is essential, in addition to encouraging traditional diets such as the Mediterranean diet rich in fish, fruits and vegetables. However, changing people’s behavior and relationship with food is a huge challenge. Cathie cites the UK 5-A-Day governmental campaign as an example.

This campaign was aimed at encouraging people to eat five portions of fruit or vegetables a day. At the end of this 25-year campaign only 3% more of the UK population was getting their five a day.”

In addition to dietary change, we could biofortify our crops through traditional breeding. For example, one answer to increasing anthocyanins in the diet could be red wheat. Red wheat is rich in anthocyanins, and furthermore less susceptible to pre-harvest sprouting, which causes large crop losses every year for farmers. However, we have so far resisted selecting for this trait in wheat breeding programs as it is not considered esthetically pleasing. To improve our diets we may need to change our expectations of what we want our plates to look like.

Next steps

Plant scientists alone cannot tackle biofortification of our diets! Cathie believes the key to a healthier future is interdisciplinary research:

“Everyone needs to come together: nutritionists, epidemiologists, plant breeders, and plant scientists. However, with such a diverse group of people it is hard to reach agreement on the next steps, and equally as difficult to secure funding for research projects. We really need to promote collaboration and interaction between all groups in order to move forwards.”

Providing For Our Brave New World

By | Blog, Future Directions
The Journal of Experimental Botany (JXB) published a special issue in June entitled ‘Breeding plants to cope with future climate change’

The Journal of Experimental Botany (JXB) published a special issue in June entitled ‘Breeding plants to cope with future climate change

By Jonathan Ingram

The Journal of Experimental Botany (JXB) recently published a special issue entitled ‘Breeding plants to cope with future climate change’.

More often than not, climate change discussions are focused on debating the degree of change we are likely to experience, unpredictable weather scenarios, and politics. However, regardless of the hows and whys, it is now an undeniable fact that the climate will change in some way.

This JXB special issue focuses on the necessary and cutting edge research needed to breed plants that can cope under new conditions, which is essential for continued production of food and resources in the future.

The breadth of research required to address this problem is wide. The 12 reviews included in the issue cover aspects such as research planning and putting together integrated research programs, and more specific topics, such as the use of traditional landraces in breeding programs. Alongside these reviews, original research addresses some of the key questions using novel techniques and methodology. Critically, the research presented comes from a diversity of labs around the world, from European wheat fields to upland rice in Brazil. Taking a global view is essential in our adaptation to climate change.

Avoiding starvation

Why release this special issue now?

Quite simply, the consequences of an inadequate response to climate change are stark for the human population. In fact, as previously discussed on the Global Plant Council blog, changing climate and extreme weather events are already having an impact on food production. For example, drought in Australia (2007), Russia (2010) and South-East China (2013) all resulted in steep increases in food prices. However, a positive side effect of this was to put food security at the top of the global agenda.

A farm in China during drought. Reduced food production can cause steep rises in food prices leading to socio-economic problems.  Photo credit: Bert van Dijk used under Creative Commons License 2.0

A farm in China during drought. Reduced food production can cause steep rises in food prices leading to socio-economic problems.
Photo credit: Bert van Dijk used under Creative Commons License 2.0

Moving forwards, researchers and breeders alike will have to change their fundamental approach to developing novel varieties of crops. In the past, breeders have been highly succesful in increasing yields to feed a growing population. However, we now need to adapt to a rapidly changing and unpredictable environment.

Dr Bryan McKersie sums this up in his contribution to the special issue. He commented: “Current plant breeding methods use large populations and rigorous selection in field environments, but the future environment is different and does not exist yet. Lessons learned from the Green Revolution and development of genetically engineered crops suggest that a new interdisciplinary research plan is needed to achieve food security.”

Driving up yields

So which traits should we be studying to increase resilience to climate change in our crops?

A potentially important characteristic brought to the foreground by Dr Karine Chenu and colleagues (University of Queensland, Australia) is susceptibility to frost damage. Although seemingly counterintuitive at first, the changing climate could result in greater frost exposure at key phases of the crop lifecycle. Warmer temperatures, or clear and cool nights during a drought, would allow vulnerable tissue to emerge earlier in the spring (Gu et al., 2008; Zheng et al., 2012). A late frost could then be incredibly destructive to our agricultural systems, causing losses of up to 85% (Paulsen and Heyne, 1983; Boer et al., 1993).

As explained by Dr Chenu, “Finding frost tolerant lines would thus help to deal with frost damage but also with losses due to extreme heat and drought – as they could be avoided by earlier sowings”.

The authors conclude that a “national yield advantage of up to 20% could result from the breeding of frost tolerant lines if useful genetic variation can be found”. The impact of this for future agriculture is incredibly exciting.

This study is just one illustration of the importance of thinking outside the box and investigating a wide range of traits when looking to adapt crops to climate change.

You can find the full Breeding plants to cope with future climate change Special Issue of Journal of Experimental Botany here. Much of the research in the issue is freely available (open access).

Journal of Experimental Botany publishes an exciting mix of research, review and comment on fundamental questions of broad interest in plant science. Regular special issues highlight key areas.

References

Association of Applied Biologists. 2014. Breeding plants to cope with future climate change. Newsletter of the Association of Applied Biologists 81, Spring/Summer 2014.

Boer R, Campbell LC, Fletcher DJ. 1993. Characteristics of frost in a major wheat-growing region of Australia. Australian Journal of Agricultural Research 44, 1731–1743.

Gu L, Hanson PJ, Post WM et al. 2008. The 2007 Eastern US spring freeze: increased cold damage in a warming world? BioScience 58, 253–262.

Paulsen GM, Heyne EG. 1983. Grain production of winter wheat after spring freeze injury. Agronomy Journal 75, 705–707.

Zheng BY, Chenu K, Dreccer MF, Chapman SC. 2012. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Global Change Biology 18, 2899–2914.

“So what does the Global Plant Council actually do?” – SEB Prague 2015

By | ASPB, Blog, GPC Community, Scientific Meetings, SEB

Dobrý den!

 View across the Vltava river of Prague's Old Town and the Charles Bridge.


View across the Vltava river of Prague’s Old Town and the Charles Bridge.

Last week I attended the Society for Experimental Biology (SEB)’s Annual Main Meeting in the wonderful city of Prague in the Czech Republic.

Armed with a banner, a new batch of hot-off-the-press leaflets, some of our infamous GPC recycled paper pens, and a map of the world, the purpose of my trip was to staff an exhibitor’s booth at the conference to help raise awareness of the GPC and the projects and initiatives we are involved with.

2015-07-03 09.50.14To encourage delegates to speak to the exhibitors, there was a chance to win prizes in exchange for a ‘passport’ filled with stickers or stamps collected from each of the booths. This gave me a fantastic opportunity to meet people from all over the world and tell them about the Global Plant Council – even the SEB’s Animal and Cell biologists!

Many visitors to the booth were from Europe, but I also met people from as far away as Argentina, Australia, China and Vietnam. Thanks to everyone who visited the booth and gave me their email addresses to sign up for our monthly e-Bulletin newsletter!

“So what does the Global Plant Council actually do?”

This was the question I was most frequently asked at the conference. The answer is: many things! But to simplify matters, our overall remit falls into two main areas.

1) Enabling better plant science

2015-07-03 09.50.39

Visitors to our booth at SEB 2015 were asked to put their plant science on the map!

Plant science has a critical role to play in meeting global challenges such as food security, hunger and malnutrition. The GPC currently has 29 member organizations, including the SEB, representing over 55,000 plant, crop, agricultural and environmental scientists around the world. By bringing these professional organizations together under a united global banner, we have a stronger voice to help influence and shape policy and decision-making at the global level.  Our Executive Board and member organization representatives meet regularly and feed into international discussions and consultations.

The GPC also aims to facilitate more effective and efficient plant-based scientific research. Practically speaking, this means we organize, promote, provide support for, and assist with internationally collaborative projects and events. A good example is the Stress Resilience Symposium and Discussion Forum we are hosting, together with the SEB, in Brazil in October.

This meeting – which will be a satellite meeting of the International Plant Molecular Biology 2015 conference – will bring together scientists from across the world who are studying the mechanisms by which plants interact with and respond to their environments, particularly in the face of climate change. It will provide an excellent opportunity for researchers of all levels and from different regions to network and learn from each other, fostering new relationships and collaborations across borders. Registration and abstract submission is now open, so why not come along!

Importantly, as well as learning from researchers all over the world about the fantastic research they are doing, we also want to identify important research that is not being done, or which could be done better. Then, we can come together to discuss strategies to fund and fill these gaps.

You can find out more about our other current initiatives by going to our website.

2) Enabling better plant scientists

2015-07-03 12.42.41As well as physically bringing people together at meetings and events, the Global Plant Council aims to better connect plant scientists from around the world, promote plant research and funding opportunities, share knowledge and best practice, and identify reports, research tools, and educational resources.

Plant scientists have created an amazing diversity of assets for research and education, so by facilitating access to and encouraging use of these resources, we hope that a desperately needed new generation of plant researchers will be inspired to continue working towards alleviating some of the world’s most pressing problems. For example, we’re translating plant science teaching materials into languages other than English, and are helping the American Society of Plant Biologists to curate content for Plantae.org, an online resource hub and gathering place for the plant science community that will be launched later this year – stay tuned!

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

In addition, the GPC website is full of useful information including research and funding news, an events calendar, reports and white papers, fellowships and awards. We operate a Twitter account (@GlobalPlantGPC) for up-to-the-minute news and views, and a Spanish version @GPC_EnEspanol. We also have a blog (obviously!) that is regularly updated with interesting and informative articles written by the GPC staff, our two New Media Fellows, and plant scientists from across our member network. A Facebook page will be coming soon!

If you would like any more information about the projects and initiatives mentioned here, or more details about the GPC’s work, please do contact me (Lisa Martin, Outreach & Communications Manager): lisa@globalplantcouncil.org.