Tag

DivSeek Archives - The Global Plant Council

Student-driven plant breeding symposium addresses global challenges in the 21st century

By | Blog, GPC Community

This week we spoke to Francisco Gomez and Ammani Kyanam, graduate students in the Soil and Crop Science Department at Texas A&M University, USA. They were part of the organizing committee for the recent Texas A&M Plant Breeding Symposium, a successful meeting run entirely by students at the University.

Francisco Gomez and Ammani Kyanam

Francisco Gomez and Ammani Kyanam, part of the student organizing committee of the Plant Breeding Symposium

Could you begin with a brief introduction to the Plant Breeding Symposium held at Texas A&M in February?

Texas A&M University is one of the largest academic and public plant breeding institutions worldwide, which trains breeders in a variety of programs. Every year, students at the University organize the Texas A&M Plant Breeding Symposium, which is part of the DuPont Pioneer series of symposia. The symposium provides a platform for graduate students to bridge the interaction between the public and private sectors and engage in conversations about the grand challenges facing humanity that could be addressed by plant breeding. It’s also a great chance to network with faculty, students, and industry representatives.

 

Could you tell us more about this theme and how the different sessions were chosen?

We wanted the theme of the meeting to mirror the university’s goal of thinking big to pinpoint solutions to modern global challenges using plant science and breeding. Every member of the committee had the opportunity propose a theme, which were then put to a vote.

Nikolai Vavilov

Nikolai Vavilov, a Russian botanist and geneticist, was the inspiration for this year’s symposium. Image credit: Public Domain.

This year’s theme, “The Vavilov Method: Utilizing Genetic Diversity”, celebrated the life and career of Russian botanist Nikolai Vavilov, who identified the centers of origin of cultivated plants. We invited plant scientists and breeders who are applying Vavilov’s ideas through the conservation, collection, and effective utilization of genetic diversity in modern crop breeding programs. This year we also developed a workshop entitled “Where does a breeder go to find genetic diversity?”, which allowed students and faculty to talk about the importance of utilizing genetic diversity in crop improvement and to learn new tools to help them incorporate genetic diversity in breeding programs.

 

Could you tell us more about how you developed the workshop?

Our aim for the workshop was to engage students and faculty on where we can find genetic diversity, how we can use it, and to include a panel discussion on the challenges and the future of genetic diversity in modern plant breeding programs. As a new value-added event, the workshop was challenging to set up because it required a different set of skills to the rest of the meeting. Once we had an idea of what we wanted, we set up an initial meeting with our speakers where we brainstormed ideas. After several online meetings and e-mails with Professor Paul Gepts (UC Davis), Dr. Colin Khoury (Agricultural Research Service, USDA; check out his recent GPC blog here!), and Professor Susan McCouch (Cornell University), we finalized the structure of the workshop, the layout of the sessions, and the objectives for the speakers. We also had a representative from DivSeek, Dr. Ruth Bastow, on the discussion panel, who contributed to our discussion on future tools for accessing diversity in the future.

 

How has the symposium grown since the inaugural meeting in 2015?

Every year we want to make the symposium a memorable event, and we want other students and faculty to really get something out of it. We are learning more and more about the students and faculty with these events, particularly in terms of which topics are the most exciting or interesting. The symposium has also grown into a two-day event, with this year’s inclusion of the workshop.

 

Did you have to overcome any challenges in the organization of the event?

One of our biggest challenges was to secure funding for the event, which is free to attend. To add further value to our event, we wanted to have additional components such as a student research competition and/or workshop, which meant we had to aggressively fundraise from multiple sources. This involved writing a lot of grant proposals both to plant sciences departments across Texas A&M University, as well as to other sources of external funding.

We are grateful to DuPont Pioneer for providing a large amount of the funding. In 2017, we also received sponsorship from the Texas Institute for Genomic Science and Society, Departments of Soil and Crop Sciences, Molecular and Environmental Plant Science, Horticulture, Plant Pathology, and Biology, Texas Grain Sorghum Association, Texas Peanut Producers Board, and Cotton Incorporated. Our beverage sponsor was Pepsi and Kind Snacks was our snack sponsor.

 

What advice would you give a graduate student trying to organize a similar event?

Plan early and set small goals! Communication is key for a large team to organize such an event. We encourage groups to use Slack or some sort of team work interface. It really helped us to be in constant communication with each other during the months leading up to the symposium.

 

Could you tell us a little about your own research?

My research (Francisco Gomez) is focused on identifying genomic regions (known as quantitative trait loci; QTLs) associated with mechanical traits that are known to be associated with stem lodging, a major agronomic problem that reduces yields worldwide. My colleague and co-chair, Ammani Kyanam, received her Masters in Plant Breeding in while working in the cotton cytogenetics program in our department. Her research focused on developing genomic tools to facilitate the development of Chromosome Segment Substitution Lines for upland cotton. She is currently mapping QTLs for aphid resistance in sorghum for her Ph.D. You can learn more about the research of our individual committee members at http://plantbreedingsymposium.com/committee/.

 

How can our readers connect with you?

We have a strong social media presence via Facebook, Instagram and YouTube, where we post event videos, photos and periodical updates. Check them out below!

Facebook: TAMUPBsymposium

Instagram: @pbsymposium

Twitter: @pbsymposium

YouTube: Texas A&M Plant Breeding Symposium

Website: plantbreedingsymposium.com

Email: mailto:pbsymposium@gmail.com

Biofortification

By | Blog, GPC Community

Approaches to biofortification

Biofortification is the improvement of the nutritional value of our crops through both traditional breeding and genetic engineering. Alongside DivSeek and Stress Resilience, biofortification is one of the Global Plant Council’s three main initiatives and will be central to addressing many of the challenges facing world health. However, biofortification doesn’t always involve changing our crops in some way. Often the nutrients we are lacking are present in pre-existing crops. We can biofortify our diets simply by identifying what’s missing and altering our life style accordingly.

Tackling undernourishment

The share

The share (%) of undernourished people per country. From: Max Roser (2015) -‘Hunger and Undernourishment’. Published online at www.OurWorldInData.org

More often that not we intuitively link biofortification with tackling undernourishment in the developing world, and indeed improvements in the diets of deprived communities would be of enormous benefit to global health.

To do this, a key challenge is to increase the nutrient content of staple food crops such as rice in Asia and maize in sub-Saharan Africa. We need to do this in a sustainable and affordable way; ensuring foods are accessible to those who need it. Alongside the fortification of staple crops we need to identify economical crop species that will grow in harsh environments and provide nutrients currently absent from the diet.

Addressing obesity

It is easy to forget that malnutrition is also a problem in developed countries. Worldwide, at least 2.8 million people per year die from obesity-related illnesses, and in 2011 more than 40 million children under the age of five were overweight. Obesity and related health problems such as diabetes, heart disease and certain cancers, place enormous strain on health services, and are partly a function of poor diet lacking in fibre and key phytonutrients. Addressing this is as important as tackling undernourishment, and many of the same principles apply.

Simple lifestyle changes, such as encouraging the consumption of more fruits and vegetables, are clearly a priority. In addition to this dietary change, if we are going to biofortify foods, there should be an emphasis on crops that are already widely consumed.

Purple tomatoes

Professor Cathie Martin

Professor Cathie Martin works at the John Innes Centre researching the link  between diet and health, and how crops could be fortified to improve our diets and global health.

Tomatoes, are one crop plant already eaten widely in the West, commonly found in fast and convenience foods. For this reason they became the focus of the work of Professor Cathie Martin at the John Innes Centre in Norwich, UK. Cathie’s lab has developed a genetically modified tomato that is rich in anthocyanins, making them purple in colour. Anthocyanins are an important dietary component that can have numerous health benefits, including a potentially significant role in the prevention of diseases such as cancer and diabetes. They are the compounds that give some foods, such as blueberries or eggplant, their distinctive blue or purple colouring. Consuming higher quantities could be highly beneficial to health.

“We focused on anthocyanins because of their huge potential health benefits. Pre-clinical studies show that introducing our purple tomatoes into the diet could be an incredibly effective way to protect against diseases such as cancer. Our next steps will be to confirm these findings in human trials,” says Cathie.

However, naturally occurring tomato varieties containing anthocyanins already exist. Wouldn’t it be better to increase consumption of these rather than creating new ones?

“Indeed purple tomatoes do occur naturally. However, these have anthocyanins only in the skin, in quantities too small to make a significant impact on health. Our genetically modified tomatoes have anthocyanins in all tissues,” explains Cathie.

Since developing the purple tomatoes, Cathie, in collaboration with Professor Jonathan Jones, has set up Norfolk Plant Sciences, the UK’s first GM crop company. However, resistance and uncertainty in Europe surrounding GM technology means that progress has been slow.

“The company was founded in 2007 and we are currently working towards the approval of our purple tomato juice in the USA. Producing just the juice rather than the entire fruit means there are no seeds in the final product. This eliminates environmental challenges without compromising health benefits. If the juice proves successful in the USA we may then work towards approval in the UK and Europe.”

It’s not all about Genetic Modification

Of course if we want to make drastic changes to our foods, such as increase anthocyanins in our tomatoes or carotenoids in our rice, GM technology will be a necessity. However, we can go some way to biofortifying our diets without the use of GM.

Golden rice

Golden rice, shown on the left, is a biofortified crop that accumulates high quantities of provitamin A in the grain. This could help tackle Vitamin A Deficiency in developing countries, from which 500,000 children become blind every year, and nine million will die of malnutrition. Photo credit: IRRI photos used under Creative Commons 2.0

Primarily we really need to focus on changing diet and lifestyle. Promoting plants rich in the nutritional components we need is essential, in addition to encouraging traditional diets such as the Mediterranean diet rich in fish, fruits and vegetables. However, changing people’s behavior and relationship with food is a huge challenge. Cathie cites the UK 5-A-Day governmental campaign as an example.

This campaign was aimed at encouraging people to eat five portions of fruit or vegetables a day. At the end of this 25-year campaign only 3% more of the UK population was getting their five a day.”

In addition to dietary change, we could biofortify our crops through traditional breeding. For example, one answer to increasing anthocyanins in the diet could be red wheat. Red wheat is rich in anthocyanins, and furthermore less susceptible to pre-harvest sprouting, which causes large crop losses every year for farmers. However, we have so far resisted selecting for this trait in wheat breeding programs as it is not considered esthetically pleasing. To improve our diets we may need to change our expectations of what we want our plates to look like.

Next steps

Plant scientists alone cannot tackle biofortification of our diets! Cathie believes the key to a healthier future is interdisciplinary research:

“Everyone needs to come together: nutritionists, epidemiologists, plant breeders, and plant scientists. However, with such a diverse group of people it is hard to reach agreement on the next steps, and equally as difficult to secure funding for research projects. We really need to promote collaboration and interaction between all groups in order to move forwards.”

Genetic Diversity in our Food Systems

By | Blog, Future Directions
Gurdev Khush at IRRI

Gurdev Khush at IRRI. Photo credit: IRRI photos. Reproduced under a Creative Commons license 2.0

This week’s blog post has been written by agronomist and geneticist Gurdev Khush. Gurdev had a major role to play in the Green Revolution, and while working at the International Rice Research Institute (IRRI) developed more than 300 rice varieties, one of which (IR36) became the most widely planted variety of rice. The impact and significance of his work has been recognized by numerous awards including the World Food Prize in 1996, the Wolf Prize in Agriculture in 2000, the Golden Sickle Award in 2007, and in 1987 the Japan Prize.

Our civilization developed with the domestication of plants for food, fiber and shelter about 10,000 years ago. Since then we have made constant improvements to these domesticated plants based on genetic diversity. It is the conservation, evaluation and utilization of this genetic diversity that will be essential for further improvements in our food crops and world food security.

Gene banks conserve biodiversity

The first important step in conserving biodiversity was the establishment of a gene bank by Nikolai Vavilov at the Leningrad Seedbank in Russia during the 1920s. In subsequent years more gene banks were created in developed countries, and the Green Revolution provided major impetus for the establishment of gene banks in developing countries. The first gene bank for the conservation of rice germplasm was organized after IRRI was established in the Philippines in 1960. Other rice growing countries followed suit and now most of them have their own gene banks.

The IRRI gene bank has over 120,000 entries

IRRI medium term seed store

The medium term storage unit of the IRRI seed bank. Photo credit: IRRI photos. Reproduced under a Creative Commons license 2.0.

The IRRI gene bank has progressively grown from a few thousand entries in 1962 to over 120,000 entries today, including accessions of all the wild species. The germplasm is stored under two-temperature and humidity regimes. The medium term store keeps seeds at 4ºC and a relative humidity of 35% for 30–40 years, while in the longer term store, maintained at –10ºC and a relative humidity of 20%, seeds are expected to remain viable for 100 years.

IRRI accessions are evaluated for morphological traits, grain quality characteristics, disease and insect resistance, and for tolerance to abiotic stresses such as drought, floods, problem soils and adverse temperatures. These are all important characteristics in terms of breeding resilient and high yielding rice varieties for the future.

Selection of new rice varieties

Numerous landraces have been utilized for breeding high yielding rice varieties. The first high yielding variety, IR8, was developed from a cross between two landraces, one from Indonesia and the other from China. Another variety, IR64, is one of the most widely grown rice varieties, and has 19 landraces and one wild species in its ancestry.

IR64

Rice variety IR64, one of the most widely grown rice varieties. Photo credit: IRRI photos. Used under Creative Commons license 2.0.

Ensuring future food security

Gene banks have played an important role in world food security. However, as the population grows there are now even bigger challenges for meeting demand. Climate change and increased competition for land and water resources further magnify the problem. We need to breed climate resilient crop varieties with higher productivity, durable resistance to diseases and insects, and tolerance to abiotic stresses. Success will depend upon the continuous availability of genetic diversity; we must redouble our efforts to unlock the variability currently preserved in our gene banks.

Diversity Seek Initiative

Establishment of the Diversity Seek Initiative (DivSeek) and the proposed Digital Seed Bank, under the auspices of the Global Plant Council, is a welcome development.

The aim of DivSeek is to develop a unified, coordinated and cohesive information management platform to provide easy access to genotypic and phenotypic data on germplasm preserved in gene banks. It is an international effort to bring together gene bank curators, plant breeders and biological researchers. To begin with, the project will develop standards and generate genotypic, transcriptome and phenotypic information for cassava, rice and wheat diversity. This will form the foundation of the Digital Seed Bank, a novel type of database containing standardized and integrated molecular information on crop diversity. The information from this database will be publicly available, and will be of enormous scientific and practical value. It has the potential to significantly increase our understanding of the molecular basis of crop diversity, and its application in breeding programs.

If your organization is interested in joining DivSeek, information can be found here. Alternatively, sign up to the mailing list to keep up to date with the initiative.