Plants often develop communities with microorganisms in their roots, which influences plant health and development. Although the recruitment of these microbes is dictated by several factors, it is unclear whether the genetic variation in the host plants plays a role. In a new study, researchers explored this question and their work can help improve agriculture productivity.
Nature-based climate solutions, such as planting trees, won’t be anywhere near as big a part of the world’s solution to climate change as governments currently plan for, and relying on them is ‘risky’ according to a report.
Plants have evolved fiendishly complicated metabolic networks. For years, scientists focused on how plants make secondary metabolites, the compounds that plants produce to enhance their defense and survival mechanisms.
New research has made significant strides in understanding how coniferous forest ecosystems may respond to climatic changes. The study investigates the relationship between tree-ring indices (TRI) and the Normalized Difference Vegetation Index (NDVI) in the context of climate, topography, and soil conditions.
Part of modern cancer therapy is the use of chemicals that kill the tumor. Unfortunately, these chemicals are often very complex, difficult to obtain and thus expensive. Researchers have unravelled the biosynthetic pathway of paclitaxel in Yew plants. This discovery might facilitate the production of this very complex molecule which is currently produced with great efforts and high costs.
Plants emit odours for a variety of reasons, such as to communicate with each other, to deter herbivores or to respond to changing environmental conditions. An interdisciplinary team of researchers carried out a study to investigate how biodiversity influences the emission of these substances. For the first time, they were able to show that species-rich forests emit less of these gases into the atmosphere than monocultures.
Rice, vital for global food security, faces production challenges during the heading-flowering stage. Traditional phenotyping struggles for large-scale analysis, prompting a shift to advanced computer vision and deep learning. While methods like SIFT and neural networks enhance rice panicle analysis, capturing dynamic growth necessitates merging field cameras with deep learning for precise, real-time monitoring.
In a study conducted over five years from 2018, scientists discovered that a well-known protective hormone typically released by plants above ground during periods of stress – a volatile organic compound (VOC) known as methyl jasmonate (MeJA) – possessed a hitherto unknown function. They found that MeJa served as a shared language that allows the plant to communicate with the surrounding layers of microorganisms embedded in the soil.
Aquaporins, which move water through membranes of plant cells, were not thought to be able to permeate sugar molecules, but researchers have observed sucrose transport in plant aquaporins for the first time, challenging this theory.
Researchers develop a model that analyzes the future survival of plants in a changing climate based on how far wind can carry a plant’s seeds.