Category

KAUST

Directed evolution comes to plants

By | KAUST, News

Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.

A new platform for speeding up and controlling the evolution of proteins inside living plants has been developed by a KAUST-led team.

Previously, this type of directed evolution system was only possible in viruses, bacteria, yeast and mammalian cell lines. The Saudi research—part of KAUST’s Desert Agriculture Initiative—has now expanded the technique to rice and other food plants. It means that plant breeders now have an easy way to rapidly engineer new crop varieties capable of withstanding weeds, diseases, pests and other agricultural stresses.

“We expect that our platform will be used for crop bioengineering to improve key traits that impact yield and immunity to pathogens,” says group leader Magdy Mahfouz. “This technology should help improve plant resilience under climate change conditions.”

To experimentally build their directed evolution platform, Mahfouz and his colleagues used a combination of targeted mutagenesis and artificial selection in the rice plant, Oryza sativa. They took advantage of the gene-editing tool known as CRISPR to generate DNA breaks at more than 100 sites throughout the SF3B1 gene, which encodes a protein involved in the processing of other gene transcripts. After manipulating the DNA of small bundles of rice cells in this way, the researchers then grew the mutated seedlings in the presence of herboxidiene, a herbicide that normally targets the SF3B1 protein to inhibit plant growth and development.

This strategy ultimately yielded more than 20 new rice variants with mutations that conferred resistance to herboxidiene to varying degrees. In collaboration with Stefan Arold’s group at the KAUST Computational Bioscience Research Center, Mahfouz and his colleagues then characterized the structural basis of the resistance—showing, for example, how particular mutations helped destabilize herbicide binding to the SF3B1 protein.

Herboxidiene is not widely used in industrial agriculture, but the same basic directed evolution strategy could now be used to design crops resistant to more common weed-killers. The herbicides would then eliminate unwanted surrounding plants while leaving the desired cultivated crop intact.

Breeders could also begin to evolve practically any trait of interest, notes Haroon Butt, a postdoctoral fellow in Mahfouz’s lab. “This is a proof-of-principle study with wide applicability,” says Butt, the first author of the paper that outlines the technology. “Our platform mimics Darwinism, and the selection pressure involved helps enforce the development of new gene variants and traits that would not be possible by any other known method.”

Read the paper: Genome Biology

Article source: KAUST – King Abdullah University of Science and Technology

Image: KAUST

Harnessing plant hormones for food security in Africa

By | KAUST, News

Striga hermonthica, also known as purple witchweed, is an invasive parasitic plant that threatens food production in sub-Saharan Africa. It is estimated to ruin up to 40 per cent of the region’s staple crops, the equivalent of $7-10 billion, putting the livelihoods and food supplies of 300 million people in danger.

Striga has an Achilles’ heel: it’s a parasite that attaches to the roots of other plants. If it can’t find a host plant to attach to, it dies. Scientists have found a way to exploit Striga’s Achilles’ heel to eradicate it from farmers’ fields.

Salim Al-Babili, associate professor of plant science at the King Abdullah University of Science and Technology, and colleagues found that they could trick Striga seeds that a host plant was growing nearby. When conditions are right, the Striga seeds germinate, but without a host plant to attach to, they cannot survive.

The scientists take advantage of plant hormones called strigolactones, which are exuded by plant roots. It is these hormones that trigger Striga seeds to germinate. By treating bare crop fields in Burkina Faso with artificial strigolactones, the scientists found that they were able to reduce the number of Striga plants by more than half.

The scientists’ solution can be applied to crop fields over the course of a crop rotation, and doesn’t require additional water – the treatment begins to work when the rains fall. This has obvious advantages in a region where water is scarce. Al-Babili has been awarded a $5 million grant by the Bill & Melinda Gates Foundation to continue developing real-world solutions to the Striga problem.

This new method will allow farmers and scientists to work together to combat the spread of the invasive Striga plant and help protect the food security of 300 million people in sub-Saharan Africa.

Read the paper: Plants People Planet

Image Credit: Wikimedia

Mother grain genome: insights into quinoa

By | Blog, KAUST, Research

Sales of quinoa (Chenopodium quinoa) have exploded in the last decade, with prices more than tripling between 2008 and 2014. The popularity of this pseudocereal comes from its highly nutritious seeds, which resemble grains and contain a good balance of protein, vitamins, and minerals. The nourishing nature of quinoa meant it was prized by the Incas, who called it the “Mother grain”.

Quinoa

Quinoa is a popular ‘grain’, but it is more closely related to spinach and beetroot than cereals like wheat or barley. Image credit: Flickr user. Used under license: CC BY 2.0.

Quinoa is native to the Andes of South America, where it thrives in a range of conditions from coastal regions to alpine regions of up to 4000 m above sea level. Its resilience and nutritious seeds means that quinoa has been identified as a key crop for enhancing food security, but there are currently very few breeding programs targeting this species.

The challenge of improving the efficiency and sustainability of quinoa production has so far been restricted by the lack of a reference genome. This week, a team of researchers led by Professor Mark Tester (King Abdullah University of Science & Technology; KAUST) addressed this issue, publishing a high-quality genome sequence for quinoa in Nature. They compared the genome with that of related species to characterize the evolution and domestication of the crop, and investigated the genetic diversity of economically important traits.

 

The evolution of quinoa

Tester and colleagues used an array of genomics techniques to assemble 1.39 Gb of the estimated 1.45-1.50 Gb full length of quinoa’s genome. Quinoa is a tetraploid, meaning it has four copies of each chromosome. The researchers shed light on the evolutionary history of this crop by sequencing descendants of the two diploid species (each containing two sets of chromosomes) that hybridized to generate quinoa; kañiwa (Chenopodium pallidicaule) and Swedish goosefoot (Chenopodium suecicum). Comparing these sequences to quinoa and other relatives, the team showed that the hybridization event likely occurred between 3.3 and 6.3 million years ago. A comparison with other closely related Chenopodium species also suggested that, contrary to previous predictions, quinoa may have been domesticated twice, both in highland and coastal environments.

Quinoa field

Quinoa field. Image credit: LID. Used under license: CC BY-SA 2.0.

 

Washing away quinoa’s bitter taste

Quinoa seeds are coated with soap-like chemicals called saponins, which have a bitter taste that deters herbivores. Saponins can disrupt the cell membranes of red blood cells, so they have to be removed before human consumption, but this process is costly, so quinoa breeders are always looking for varieties that produce lower levels of saponins.

Sweet (low-saponin) quinoa strains do occur naturally, but the genes that regulate this phenotype were previously unknown. Tester and colleagues investigated sweet and bitter quinoa strains and discovered that a single gene (TRITERPENE SAPONIN BIOSYNTHESIS ACTIVATING REGULATOR-LIKE 1 [TSARL1]) controls the amount of saponins produced in the seeds. The low-saponin quinoa strains contained mutations in TSARL1 that prevented it from functioning properly. This is a key target for the improvement of quinoa in the future, although farmers will have to find new ways to protect their crops from birds and other seed predators!

Quinoa flowers

Quinoa flowers. Image credit: Alan Cann. Used under license: CC BY-SA 2.0.

 

Quality quinoa

The high-quality reference genome for quinoa generated by Tester and colleagues is likely to be vital for allowing many exciting improvements in the future. Breeders hoping to improve the yield, ease of harvest, stress tolerance, and saponin content of quinoa can develop genetic markers to speed up breeding for these key traits, improving the productivity of quinoa varieties and enhancing future food security.

 


Read the paper in Nature: Jarvis et al., 2017. The genome of Chenopodium quinoa. Nature. DOI: 10.1038/nature21370

Thank you to Professor Mark Tester (KAUST) for providing information used in this post!