In cereal and legume crops, the size of the plant organs, particularly seeds, is closely related to final yield. However, the molecular mechanisms underlying organ size control in legumes are still poorly understood.
As the world focuses on not only solving the climate crisis but also sustaining the world’s food supply, researchers need tools to evaluate how atmospheric pollutants affect crops. Over the past decade, the agriculture community has turned to solar-induced chlorophyll fluorescence (SIF) measurements to detect stresses on plants.
Regardless of how one says “tomato,” they all contain tomatine, a toxin in the plant’s green fruit, leaves, and roots. Tomatoes produce the bitter-tasting compound—a major plant-specialized metabolite secreted from the roots—to defend against pathogens and foragers.
For reasons of food security and economic incentive, farmers continuously seek to maximize their marketable crop yields. As plants grow inconsistently, at the time of harvesting, there will inevitably be variations in quality and size of individual crops. Finding the optimal time to harvest is therefore a priority for farmers. A new approach making heavy use of drones and artificial intelligence demonstrably improves this estimation by carefully and accurately analyzing individual crops to assess their likely growth characteristics.
Nitrogen is an essential nutrient for plant growth, but the overuse of synthetic nitrogen fertilizers in agriculture is not sustainable. In a review article a team of bacteriologists and plant scientists discuss the possibility of using genetic engineering to facilitate mutualistic relationships between plants and nitrogen-fixing microbes called “diazotrophs.” These engineered associations would help crops acquire nitrogen from the air by mimicking the mutualisms between legumes and nitrogen-fixing bacteria.
Lurking inside the crops of banana-producing-areas in east and central Africa is a disease called Banana Xanthomonas Wilt (BXW)—and new modeling has shown that if left uncontrolled, this bacterial disease could cause a 55% reduction in banana production in newly affected regions within 10 years.
Male sterility in plants enhances breeding and hybrid crop production. The elusive Sanming Dominant Genic Male Sterile (SDGMS) Rice, discovered in 2001, offered stable male sterility. Scientists recently unraveled the SDGMS gene’s mechanism. They found that in sterile plants, a retrotransposon triggers SDGMS expression in tapetal cells, causing male sterility. This discovery highlights the importance of transposable elements in genome evolution and the utility of SDGMS rice for efficient breeding without manual emasculation.
Peppers are a versatile, flavorful, and widely popular crop, used not only as a healthy food source but also for their medicinal properties. In a new study, an international team of researchers has sequenced the genomes of key cultivated and wild pepper species, offering unprecedented insights into pepper evolution, domestication, and genetic diversity.
The success of cacao cultivation depends to a large extent on functioning pollination. If there is a lack of pollinators, for example, this leads to lower yields – and thus to financial problems for farmers. A study has now investigated how the yield and quality of organic cacao can be increased – through a more efficient plantation design that’s taking ecological aspects into account. During research in Peru, the researchers identified pollination techniques that improved pollination success and produced higher quality fruit.
Rising sea levels due to climate change and artificial irrigation cause soil salinity to increase. This has a negative impact on agriculture, including viticulture. The plants die, yields decrease. Researchers have therefore studied a wild grapevine of higher salt tolerance. Their goal is to identify the genetic factors that make the grapevine resilient. They can then be inserted into commercial varieties, thus securing viticulture.