Aquaporins, which move water through membranes of plant cells, were not thought to be able to permeate sugar molecules, but researchers have observed sucrose transport in plant aquaporins for the first time, challenging this theory.
Planting flowers beside food crops on farms in India attracts bees, boosts pollination and improves crop yield and quality, researchers have found.
The slash-and-burn agriculture practiced by many Indigenous societies across the world can actually have a positive impact on forests, according to a new study done in Belize.
A genetic breakthrough unveils the high-iron mutations in peas, presenting opportunities for fortified vegetables and cereals. This discovery, based on a newly mapped pea-genome, could guide gene-editing strategies to enhance iron content in various crops, addressing global anaemia concerns, especially among women. The findings illuminate iron homeostasis in plants, offering prospects for biofortification.
As climate change intensifies, societal and individual struggles to adapt become more apparent. To explore cultural adaptation, researchers conducted the first study of its kind. Analyzing U.S. crop data over 14 years, they applied the science of cultural evolution. Their findings reveal farmers adapting to climate change in some regions, while in others, crops are increasingly mismatched. This first cultural approach marks a milestone in refining climate adaptation strategies.
In cereal and legume crops, the size of the plant organs, particularly seeds, is closely related to final yield. However, the molecular mechanisms underlying organ size control in legumes are still poorly understood.
As the world focuses on not only solving the climate crisis but also sustaining the world’s food supply, researchers need tools to evaluate how atmospheric pollutants affect crops. Over the past decade, the agriculture community has turned to solar-induced chlorophyll fluorescence (SIF) measurements to detect stresses on plants.
Regardless of how one says “tomato,” they all contain tomatine, a toxin in the plant’s green fruit, leaves, and roots. Tomatoes produce the bitter-tasting compound—a major plant-specialized metabolite secreted from the roots—to defend against pathogens and foragers.
For reasons of food security and economic incentive, farmers continuously seek to maximize their marketable crop yields. As plants grow inconsistently, at the time of harvesting, there will inevitably be variations in quality and size of individual crops. Finding the optimal time to harvest is therefore a priority for farmers. A new approach making heavy use of drones and artificial intelligence demonstrably improves this estimation by carefully and accurately analyzing individual crops to assess their likely growth characteristics.
Nitrogen is an essential nutrient for plant growth, but the overuse of synthetic nitrogen fertilizers in agriculture is not sustainable. In a review article a team of bacteriologists and plant scientists discuss the possibility of using genetic engineering to facilitate mutualistic relationships between plants and nitrogen-fixing microbes called “diazotrophs.” These engineered associations would help crops acquire nitrogen from the air by mimicking the mutualisms between legumes and nitrogen-fixing bacteria.