From pollen forecasting, honey analysis and climate-related changes in plant-pollinator interactions, analysing pollen plays an important role in many areas of research. Microscopy is still the gold standard, but it is very time consuming and requires considerable expertise. Scientists have now developed a method that allows them to efficiently automate the process of pollen analysis.
Producing fewer sperm cells can be advantageous in self-fertilizing plants. An international study has identified a gene in the model plant Arabidopsis that reduces the number of pollen. In addition to supporting the evolutionary theory, these findings could help to optimize plant breeding and domestication in agriculture.
Over 80% of the world’s flowering plants must reproduce in order to produce new flowers, according to the U.S. Forest Service. This process involves the transfer of pollen between plants by wind, water or insects called pollinators — including bumblebees. In a new study, researchers discovered a spiny pollen that has evolved to attach to traveling bumblebees.
Unless it happens to be allergy season, most people don’t give a lot of thought to pollen. But new research might change the way we look at a field of flowers. A study suggests that pollen color can evolve independently from flower traits, and that plant species maintain both light and dark pollen because each offers distinct survival advantages.