Plane trees in cities have an important cooling effect even in extreme heat, according to a new study. The next step is to identify which tree species are particularly effective at cooling.
Established in 2015 and recently updated, MIBiG sets a global standard for annotating biosynthetic gene clusters (BGCs) and their products. Its online, open-access database now catalogs ~2,500 pathways, with contributions from 288 scientists worldwide. Updates include verified entries, biosynthesis steps,…
A recent study explored the role of public authorities in pre- and debunking misinformation, finding that source credibility impacts outcomes. For individuals who trust public authorities, their debunks were more effective in reducing misinformation credibility and agreement. However, for those…
A study highlights how a combination of environmental stressors can increase the threats faced by plants in some of the planet’s critical ecosystems.
Two of the planet’s more pressing environmental stressors have the potential to alter the growth and reproductive output of plants found right along the world’s coastlines, a new study suggests.
The research, published in the journal Environmental Pollution, is one of the first to examine the combined effects of seawater flooding and microplastic pollution on coastal plants.
It showed that both stressors had some effects on the species tested, with microplastics impacting the plants’ reproduction while flooding caused greater tissue death.
However, being exposed to both microplastics and flooding together – a threat likely to increase as a result of climate change and plastic use – had a more pronounced impact on their resource allocation.
This in turn led to the plants exhibiting altered growth and experiencing a short-term suppression in their photosynthetic efficiency, responses affect the plants’ ability to capture water, nutrients and sunlight, and contribute to ecosystem wellbeing.
They say it signposts the potential for microplastics to present an elevated risk when in combination with additional stressors like seawater flooding and that, as a result, establishing the threats presented by multiple co-occurring stressors on ecosystem resilience is a priority.
This research highlights the potential for microplastics, composed of conventional and biodegradable plastic, to detrimentally affect plant functioning. Moreso, it indicates that the effect of microplastics can be magnified by other environmental factors such as rising sea levels and coastal flooding. Studies such as this help us appreciate the potential harm posed by microplastics to a range of organisms, and ecosystem resilience generally.
The study was carried out as part of BIO-PLASTIC-RISK, a £2.6million project led by the University and supported by the Natural Environment Research Council. It focused on buck’s horn plantain (Plantago coronopus), a low-growing perennial native to Europe, Asia and North Africa – but also found in the United States, Australia, and New Zealand – which commonly grows in sand dune and beach shingle coastal habitats.
Plants were grown in soil containing conventional or biodegradable plastics for 35 days before being flooded with seawater for 72 hours, replicating the kinds of flooding event increasingly associated with storms and coastal storm surges. They were then grown for a further 24 days with scientists monitoring plant survival in addition to factors such as plant size, photosynthetic efficiency and flower production.
On a global scale, habitats such as coastal dunes and grasslands help protect communities in the form of coastal defences and wind protection. They also play a critical role in supporting biodiversity, but are coming under increasing threat from climate change and a number of other environmental factors. This study emphasises that we should not be looking at those threats in isolation as, put together, their impacts can be more pronounced. That is particularly worrying given that both microplastic pollution and coastal flooding are projected to worsen and intensify over the coming decades unless ambitious global actions are implemented.
Mick Hanley Associate Professor in Plant-Animal Interactions
Climate change is the top threat to pollinators like bees and butterflies, crucial for biodiversity and food security, according to a new review paper. The study highlights how climate-induced habitat changes and human activities harm pollinators, urging integrated conservation strategies…
"Glowing" plants may predict flash droughts by emitting solar-induced fluorescence (SIF), detected by NASA satellites. Increased plant productivity before a drought reduces soil moisture, indicating risk. These early signals, visible from space, could provide up to three months' warning, aiding…
Citizen science platforms like iNaturalist offer valuable insights into local biodiversity, but biases in data reporting can skew perceptions. Biologist's study reveals how social and ecological factors lead to these biases, influencing species distribution maps. Addressing these issues requires inclusive…
Scientists are utilizing environmental DNA (eDNA) shed by living organisms to study biodiversity. EU-funded LeDNA project collects eDNA from lakes to assess and discover species, aiding global biodiversity preservation efforts. On World Biodiversity Day, May 22, 2024, a citizen science…
New research has tracked Japanese hanami (flower viewing) via social media images, producing an unprecedented map of cherry blossoms across Japan to document their annual bloom and calculate its peak in major cities.
Wikifarmer and the Global Plant Council organized a joint webinar that brought together leading speakers in the field of new breeding technologies and gene-edited crops. With a focus on geographical specificities, each expert shared their unique perspectives and expertise, aiming…