Skip to main content
Category

Scientific Meetings

Get a new view: attend an interdisciplinary conference

By Blog, Scientific Meetings

When I first volunteered to write a blog about the Plant Wax 2015 conference, I thought I’d be writing about its relevance to the Global Plant Council’s stress resilience initiative. After all, the waxy coating (cuticle) that covers the aerial surfaces of plants is particularly important as a barrier against water loss and pathogens, while reflecting excess heat and UV radiation.

As it turns out, one of the most important lessons I learned from the meeting was a reminder of the powerful synergy that can happen when people with radically different goals and approaches get together to share ideas.

Water drops on a leaf

Plants are coated with a hydrophobic waxy covering known as a cuticle. Image credit: Adrian Scottow. Licensed under: CC BY-SA 2.0.

A meeting of two worlds

Biologists are from Venus, organic geochemists are from Mars

In the run up to the meeting, held 16–19 June 2015 in beautiful Ascona, Switzerland, I realized that the majority of speakers and delegates were organic geochemists, rather than plant scientists like myself. Other than brief discussions with the academics in the University of Bristol’s School of Chemistry I hadn’t had much interaction with this area of research, so didn’t really know what to expect.

Plant biologists are interested in cuticular waxes because of their impact on the physiology of the plant. The cuticle is composed of many different types of compounds, including alkanes, alcohols, aldehydes, ketones and esters, to say nothing of the more complicated compounds I learnt about at the conference (triterpenoids, anyone?). Each compound gives the wax certain characteristics, making it more suited to a particular environment, or to enhancing a particular function. Many of these changes, however, are yet to be fully understood.

 

The structure of the cuticle

The cuticle is formed of hydrophobic wax compounds on a scaffold of cutin (a polyester polymer), topped with a layer comprising only wax. Image credit: Yeats and Rose, 2013. Plant Physiology.

 

Organic geochemists, on the other hand, extract plant waxes from soils, sediments and rocks and analyze them as an integrated signal to cleverly reconstruct past climates. They typically investigate n-alkanes, the simplest straight-chain compounds found in waxes, which are least likely to break down over time. Amazingly, they can look at the ratio of deuterium (heavy hydrogen, 2H) to normal hydrogen (1H) in the n-alkanes to work out the plants’ source of water, or the ratio of 13C to 12C to work out whether the majority of plants at that time were using C3 or C4 photosynthesis.

The Plant Wax conference was organized to try and bring these two very different groups together, encouraging communication and crossover between research fields, and specifically, to answer the question: what could we learn from each other?

 

Leaf fossil

Plant waxes can be preserved in fossils, but organic geochemists typically look at sediments and sedimentary rocks. Image credit: James St. John. Licensed under CC BY 2.0.

Interdisciplinary cooperation

At the start of the conference, I don’t think the majority of biologists had much knowledge of the finer details of organic geochemistry. Likewise, many geochemists said they only had a general overview understanding of wax biosynthesis and plant physiology. The two fields have very little crossover in the scientific literature.

Since geologists’ isotope studies are based on generalizations made from modern biological studies in a few plant species, the geologists had several requests for biologists. Firstly, to improve climate reconstructions, they asked for more biological data!

The geochemists asked the biologists whether there was anything they could help us with. It was quite hard for me to imagine how their methods – environmental reconstructions of the past based on biological studies – could help us with modern plant biology.

In fact, I felt a little smug. I’d been feeling decidedly ignorant while hearing about ingenious geochemistry research, so I almost felt vindicated: did they need us more than we needed them?

It wasn’t until the last day of the conference that I realized just how wrong I was.

Dr Nikolai Pedentchouk

Dr Nikolai Pedentchouk

One of the last talks was by Dr Nikolai Pedentchouk, University of East Anglia, UK. He’s a collaborator of Amelia Frizell-Armitage, my fellow Global Plant Council New Media Fellow, and works on wheat waxes from an organic geochemist’s perspective.

Nikolai described his research into carbon and hydrogen isotopes in the waxy compounds of glaucous (dull blue-ish grey wax) versus non-glaucous (glossy green) wheat: “I used a field set-up to investigate several issues that are of interest to palaeoecologists and palaeoclimatologists and potentially to plant biochemists. We really wanted to know whether differences in leaf wax composition or amount resulted in differences in the isotope values of individual compound classes”.

How could this isotope research be useful to biologists? Amazingly, it could be used to elucidate the biosynthetic pathways for the different compounds in wheat wax – something that has so far not been possible using standard biological techniques.

“When plants synthesize organic compounds they fractionate stable isotopes, for example 13C vs. 12C and 2H vs. 1H. By measuring the isotopic composition of individual compound classes we could potentially reconstruct the order of reactions that could have led to the biosynthesis of a particular compound”, explained Nikolai.

Glaucous and non-glaucous wheat wax crystals

Wax crystals of glaucous (dull blue-ish grey) and non-glaucous (glossy) wheat wax crystals, taken on a scanning electron microscope. Image credit: Amelia Frizell-Armitage.

New perspectives

Nikolai’s application of geochemical techniques to solve a biological problem really opened my eyes to the innovations that can be made when people from vastly different research backgrounds work together and share ideas. Whether its using quantum mechanics to improve our understanding of photosynthesis, or chemical and computational modeling to advance synthetic biology, interdisciplinary collaboration is driving plant science research forwards, and I encourage you all to think outside your research box too!

“So what does the Global Plant Council actually do?” – SEB Prague 2015

By ASPB, Blog, GPC Community, Scientific Meetings, SEB

Dobrý den!

 View across the Vltava river of Prague's Old Town and the Charles Bridge.


View across the Vltava river of Prague’s Old Town and the Charles Bridge.

Last week I attended the Society for Experimental Biology (SEB)’s Annual Main Meeting in the wonderful city of Prague in the Czech Republic.

Armed with a banner, a new batch of hot-off-the-press leaflets, some of our infamous GPC recycled paper pens, and a map of the world, the purpose of my trip was to staff an exhibitor’s booth at the conference to help raise awareness of the GPC and the projects and initiatives we are involved with.

2015-07-03 09.50.14To encourage delegates to speak to the exhibitors, there was a chance to win prizes in exchange for a ‘passport’ filled with stickers or stamps collected from each of the booths. This gave me a fantastic opportunity to meet people from all over the world and tell them about the Global Plant Council – even the SEB’s Animal and Cell biologists!

Many visitors to the booth were from Europe, but I also met people from as far away as Argentina, Australia, China and Vietnam. Thanks to everyone who visited the booth and gave me their email addresses to sign up for our monthly e-Bulletin newsletter!

“So what does the Global Plant Council actually do?”

This was the question I was most frequently asked at the conference. The answer is: many things! But to simplify matters, our overall remit falls into two main areas.

1) Enabling better plant science

2015-07-03 09.50.39

Visitors to our booth at SEB 2015 were asked to put their plant science on the map!

Plant science has a critical role to play in meeting global challenges such as food security, hunger and malnutrition. The GPC currently has 29 member organizations, including the SEB, representing over 55,000 plant, crop, agricultural and environmental scientists around the world. By bringing these professional organizations together under a united global banner, we have a stronger voice to help influence and shape policy and decision-making at the global level.  Our Executive Board and member organization representatives meet regularly and feed into international discussions and consultations.

The GPC also aims to facilitate more effective and efficient plant-based scientific research. Practically speaking, this means we organize, promote, provide support for, and assist with internationally collaborative projects and events. A good example is the Stress Resilience Symposium and Discussion Forum we are hosting, together with the SEB, in Brazil in October.

This meeting – which will be a satellite meeting of the International Plant Molecular Biology 2015 conference – will bring together scientists from across the world who are studying the mechanisms by which plants interact with and respond to their environments, particularly in the face of climate change. It will provide an excellent opportunity for researchers of all levels and from different regions to network and learn from each other, fostering new relationships and collaborations across borders. Registration and abstract submission is now open, so why not come along!

Importantly, as well as learning from researchers all over the world about the fantastic research they are doing, we also want to identify important research that is not being done, or which could be done better. Then, we can come together to discuss strategies to fund and fill these gaps.

You can find out more about our other current initiatives by going to our website.

2) Enabling better plant scientists

2015-07-03 12.42.41As well as physically bringing people together at meetings and events, the Global Plant Council aims to better connect plant scientists from around the world, promote plant research and funding opportunities, share knowledge and best practice, and identify reports, research tools, and educational resources.

Plant scientists have created an amazing diversity of assets for research and education, so by facilitating access to and encouraging use of these resources, we hope that a desperately needed new generation of plant researchers will be inspired to continue working towards alleviating some of the world’s most pressing problems. For example, we’re translating plant science teaching materials into languages other than English, and are helping the American Society of Plant Biologists to curate content for Plantae.org, an online resource hub and gathering place for the plant science community that will be launched later this year – stay tuned!

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

My #SEBSelfie! Other updates from the meeting can be found by following the hashtag #SEBAMM on Twitter.

In addition, the GPC website is full of useful information including research and funding news, an events calendar, reports and white papers, fellowships and awards. We operate a Twitter account (@GlobalPlantGPC) for up-to-the-minute news and views, and a Spanish version @GPC_EnEspanol. We also have a blog (obviously!) that is regularly updated with interesting and informative articles written by the GPC staff, our two New Media Fellows, and plant scientists from across our member network. A Facebook page will be coming soon!

If you would like any more information about the projects and initiatives mentioned here, or more details about the GPC’s work, please do contact me (Lisa Martin, Outreach & Communications Manager): lisa@globalplantcouncil.org.