Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Gene Network Lets Plant Roots Handle Nitrogen

Enabling Tools for Breeding Plants for High Yield With Less Fertilizer

With robotics, computers and advanced genetics, researchers at the University of California, Davis, and Cold Spring Harbor Laboratory have established a core set of genes that help plants metabolize nitrogen, the key to plant growth and crop yield. They published their findings in the journal Nature.

“Nitrogen metabolism is incredibly important for growth,” said Siobhan Brady, associate professor of plant biology at UC Davis and senior author on the paper. The invention of nitrogen fertilizers over 100 years ago has enabled a massive expansion in agricultural productivity to feed billions of people. But at the same time, runoff of excess pesticides into soils, waterways and the oceans has many negative impacts.

By understanding the genes that control how plants take up and use nitrogen, scientists like Brady hope to give plant breeders tools to generate crop varieties that need less fertilizer or make better use of it.

“If we want to breed nitrogen-efficient plants, we need to look at these genes,” she said. “This will open up a lot of research.”

Science at the root

“We know the genes that are involved in nitrogen assimilation and transport but we don’t understand all the ways that nitrogen metabolism is regulated,” Brady said.

What’s more, most of these regulatory genes, called transcription factors because they control the transcription (or activity) of other genes, have been identified in stems, shoots and leaves — but not many in roots, where nitrogen actually gets into a plant from the soil.

Brady’s laboratory aims to discover the networks of genes that shape how plant roots live and grow. Because nitrogen is so important to plants, graduate student Allison Gaudinier and Brady took the premise that transcription factors for nitrogen metabolism would also be linked to other important processes.

Gaudinier used robotics to screen transcription factors against hundreds of genes at a time, assembling them into a network. Adjunct Associate Professor Doreen Ware and colleagues at Cold Spring Harbor Laboratory used computational methods to predict which genes were most important in the network. The UC Davis team could then study the role of those genes in plants.

The results establish a core set of genes that are critical in nitrogen metabolism, Brady said.

Ware is a scientist with the USDA’s Agricultural Research Service. Other authors on the paper are: at UC Davis , Joel Rodriguez-Medina, Anne-Maarit Bågman, Jessica Foret, Michelle Tang, Baohua Li, Daniel Runcie and Daniel J. Kliebenstein; Lifang Zhang, Andrew Olson and Christophe Liseron-Monfilsat, Cold Spring Harbor Laboratory, New York; Shane Abbitt, Bo Shen and Mary J. Frank, Corteva Agriscience, Johnston, Iowa.

Read the paper: Nature

Article source: University of California, Davis

Image credit: David Slipher/UC Davis

News

To protect stem cells, plants have diverse genetic backup plans

Despite evolution driving a wide variety of differences, many plants function the same way. Now a new study has revealed the different genetic strategies various flowering plant species use to achieve the same status quo.


Scientists crack the code to regenerate plant tissues

Plant regeneration can occur via formation of a mass of pluripotent cells. The process of acquisition of pluripotency involves silencing of genes to remove original tissue memory and priming for activation by external input. Led by Professor Sachihiro Matsunaga from Tokyo University of Science, a team of scientists have shown that plant regenerative capacity requires a certain demethylase that can prime gene expression in response to regenerative cues.


Pollen Genes Mutate Naturally in Only Some Strains of Corn

Pollen genes mutate naturally in only some strains of corn, according to Rutgers-led research that helps explain the genetic instability in certain strains and may lead to better breeding of corn and other crops.