Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


What makes red algae so different and why should we care?

The red algae called Porphyra and its ancestors have thrived for millions of years in the harsh habitat of the intertidal zone--exposed to fluctuating temperatures, high UV radiation, severe salt stress, and desiccation.

Red algae comprise some of the oldest non-bacterial photosynthetic organisms on Earth, and one of the most-ancient of all multicellular lineages. They are also fundamentally integrated into human culture and economics around the globe. Some red algae play a major role in building coral reefs while others serve as "seaweed" foods that are integral to various societies. Porphyra is included in salads (as are related genera of algae), is called "nori" in Japan, where it is used to wrap sushi, and "laver" in Wales, where it is a traditional and nutritious food ingredient.

Despite Porphyra's ecological, evolutionary, and commercial importance, there is still relatively little known about its molecular genetics and physiology.

That's why a team of plant scientists, including Carnegie's Arthur Grossman, sequenced and analyzed the complete genome of the red algae Porphyra umbilicalis. The genetic makeup of this extraordinarily hardy organism has provided researchers with a better understanding of red algal evolution and the ways in which these organisms cope with their brutal intertidal habitat.

Their findings are published in Proceedings of the National Academy of Sciences.

The team's analysis showed that Porphyra and other red algae have minimal structural elements that make up their cellular cytoskeletons as compared to other types of multicellular organisms. This may explain why the multicellular red algae tend to be "small" in stature.

Likewise, the team found genes for cellular processes that help Porphyra and its ancestors survive under extreme duress--including "sunscreen"-like compounds for protection from UV radiation and other compounds that allow them to withstand desiccating conditions, in addition to various proteins that ameliorate the potentially toxic consequences of absorbing strong sunlight. Furthermore, the extremely resilient, flexible walls of Porphyra cells allow them to dramatically change their volume as they lose water when they are baking in the sun and drying in the winds, and to withstand the forces of beating waves.

"The information we gleaned from the Porphyra genome shows us just how different red algae are," Grossman explained. "But it is also interesting to note that organisms evolutionarily related to the red algae have had profound impacts on human health and marine ecosystems."

For example, one group of organisms that evolved from the red algae, the apicomplexans, is non-photosynthetic and includes the plasmodium parasites that cause malaria. Another algal group that evolved from the red algae, the dinoflagellates, is responsible for toxic red tides, but is also the provider of nutrients that sustain corals, which serve as the foundation of reefs (which are homes for numerous animals).

As Grossman states, "As we learn more about the different algal groups and their evolutionary histories, we are learning more about the biotic pillars that continue to be a major foundation for sustaining and shaping life on our planet."

Read the paper: Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

Article source: Carnegie Science.

Image credit: Gabriele Kothe-Heinrich

News

New study shows producers where and how to grow cellulosic biofuel crops

According to a recent ruling by the United States Environmental Protection Agency, 288 million gallons of cellulosic biofuel must be blended into the U.S. gasoline supply in 2018. Although this figure is down slightly from last year, the industry is still growing at a modest pace. However, until now, producers have had to rely on incomplete information and unrealistic, small-scale studies in guiding their decisions about which feedstocks to grow, and where. A new multi-institution report provides practical agronomic data for five cellulosic feedstocks, which could improve adoption and increase production across the country.


Europe's lost forests: Coverage has halved over 6,000 years

More than half of Europe's forests have disappeared over the past 6,000 years thanks to increasing demand for agricultural land and the use of wood as a source of fuel, new research led by the University of Plymouth suggests.


The circadian clock sets the pace of plant growth

The recent award of the Nobel Prize in Physiology or Medicine to the three American researchers Hall, Rosbash and Young for their "discoveries of molecular mechanisms controlling the circadian rhythm" has greatly popularized this term -which comes from the Latin words "circa" (around of) and "die" (day)-. Thanks to the discoveries that these scientists did using the fruit fly, today we know that the organisms have an internal clock built of a set of cellular proteins whose amount oscillates in periods of 24 hours. These oscillations, which are autonomously maintained, explain how living organisms adapt their biological rhythm so that it is synchronized with the Earth's revolutions.