GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

What magnets have to do with pistachios

Did you ever pass an orchard with branches bursting with flowers and wonder how the trees "know" when to blossom or bear fruit all at the same time? Or perhaps you've walked through the woods, crunching loads of acorns underfoot one year but almost none the next year.

Scientists from the University of California, Davis, have given such synchrony considerable thought. In 2015, they developed a computer model showing that one of the most famous models in statistical physics, the Ising model, could be used to understand why events occur at the same time over long distances.

In a new study, published in the journal Proceedings of the National Academy of Sciences, they put their computer model to the test using thousands of real pistachio trees planted on a grid and found that it worked.

"We're trying to understand the dynamics in time and space of ecological populations," said senior author Alan Hastings, a professor in the Department of Environmental Science and Policy at UC Davis. "We were able to make use of a very large data set from more than 6,500 trees in a pistachio orchard and were able to show that ecological systems can be governed by the Ising model."


The Ising model was developed to explain permanent magnets, like the kind that stick to a refrigerator door, but the authors showed it can also help explain how pistachio trees synchronize in an orchard.

In magnetic materials, forces between neighboring atoms tend to keep electrons aligned so their magnetic forces add together. The Ising model makes quantitative predictions of how neighbor-to-neighbor interactions can create alignments over large distances.

If neighboring trees are synchronized, it implies they are communicating somehow. While the authors do not identify the means of this communication, they suggest it may be a consequence of root grafting, where roots intertwine. Grafting may help one tree "tell" another that it's time to produce, which may help neighboring trees synchronize their production. The Ising model helps predict how interactions between trees next to each other spread through the whole orchard.


"Instances of synchronous behavior, when everything comes on at once, are found throughout nature, from fruit and nut trees in orchards, to cone-bearing trees in the forest and even the sudden spread of some infectious diseases," said lead author Andrew Noble, a project scientist in the Department of Environmental Science and Policy at UC Davis at the time of the study. "Understanding these dynamics helps better explain ecological systems and their effects in natural and managed systems."

Read the paper: Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology.

Article source: UC Davis.

Image credit: UC Davis


Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.

How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.

VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.